1. Alffenaar, J.W.C., de Steenwinkel, J.E., Diacon, A.H., Simonsson, U.S., Srivastava, S. and Wicha, S.G., 2022. Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs: An evaluation of in vitro, in vivo methodologies and human studies. Frontiers in Pharmacology13, p.1063453.
  2. Aljutayli, A., Thirion, D.J. and Nekka, F., 2022. Critical assessment of the revised guidelines for vancomycin therapeutic drug monitoring. Biomedicine & Pharmacotherapy155, p.113777.
  3. Bloomingdale, P., Meregalli, C., Pollard, K., Canta, A., Chiorazzi, A., Fumagalli, G., Monza, L., Pozzi, E., Alberti, P., Ballarini, E. and Oggioni, N., 2022. Systems pharmacology modeling identifies a novel treatment strategy for bortezomib-induced neuropathic pain. Frontiers in Pharmacology12, p.817236.
  4. Bordeau, B.M., Abuqayyas, L., Nguyen, T.D., Chen, P. and Balthasar, J.P., 2022. Development and evaluation of competitive inhibitors of trastuzumab-HER2 binding to bypass the binding-site barrier. Frontiers in pharmacology13, p.837744.
  5. Bordeau, B.M., Polli, J.R., Schweser, F., Grimm, H.P., Richter, W.F. and Balthasar, J.P., 2022. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Monoclonal Antibody Tumor Disposition. International Journal of Molecular Sciences23(2), p.679.
  6. Brown, L.V., Coles, M.C., McConnell, M., Ratushny, A.V. and Gaffney, E.A., 2022. Analysis of cellular kinetic models suggest that physiologically based model parameters may be inherently, practically unidentifiable. Journal of Pharmacokinetics and Pharmacodynamics49(5), pp.539-556.
  7. Bustamante, C., Díez-Mejía, A.F., Arbeláez, N., Soares, M.J., Robledo, S.M., Ochoa, R., Varela-M, R.E. and Marín-Villa, M., 2022. In silico, in vitro, and pharmacokinetic studies of UBMC-4, a potential novel compound for treating against Trypanosoma cruzi. Pathogens11(6), p.616.
  8. Bustamante, C., Muskus, C. and Ochoa, R., 2022. Rational computational approaches to predict novel drug candidates against leishmaniasis. In Annual Reports in Medicinal Chemistry (Vol. 59, pp. 137-187). Academic Press.
  9. Chang, H.Y., Wu, S., Chowdhury, E.A. and Shah, D.K., 2022. Towards a translational physiologically-based pharmacokinetic (PBPK) model for receptor-mediated transcytosis of anti-transferrin receptor monoclonal antibodies in the central nervous system. Journal of Pharmacokinetics and Pharmacodynamics49(3), pp.337-362.
  10. Chapagain, M., Pasipanodya, J.G., Athale, S., Bernal III, C., Trammell, R., Howe, D. and Gumbo, T., 2022. Omadacycline efficacy in the hollow fibre system model of pulmonary Mycobacterium avium complex and potency at clinically attainable doses. Journal of Antimicrobial Chemotherapy77(6), pp.1694-1705.
  11. Chen, P., Bordeau, B.M., Zhang, Y. and Balthasar, J.P., 2022. Transient inhibition of trastuzumab–tumor binding to overcome the “binding-site barrier” and improve the efficacy of a trastuzumab–gelonin immunotoxin. Molecular Cancer Therapeutics21(10), pp.1573-1582.
  12. Darlow, C.A., Farrington, N., Johnson, A., McEntee, L., Unsworth, J., Jimenez-Valverde, A., Kolamunnage-Dona, R., Da Costa, R.M., Ellis, S., Franceschi, F. and Sharland, M., 2022. Flomoxef and fosfomycin in combination for the treatment of neonatal sepsis in the setting of highly prevalent antimicrobial resistance. Journal of Antimicrobial Chemotherapy77(5), pp.1334-1343.
  13. Deshpande, D., Srivastava, S., Pasipanodya, J.G. and Gumbo, T., 2022. Minocycline intra-bacterial pharmacokinetic hysteresis as a basis for pharmacologic memory and a backbone for once-a-week pan-tuberculosis therapy. Frontiers in Pharmacology13, p.1024608.
  14. Farrington, N., McEntee, L., Johnson, A., Unsworth, J., Darlow, C., Jimenez-Valverde, A., Hornik, C., Greenberg, R., Schwartz, J., Das, S. and Hope, W., 2022. Pharmacodynamics of Meropenem and Tobramycin for Neonatal Meningoencephalitis: Novel Approaches to Facilitate the Development of New Agents to Address the Challenge of Antimicrobial Resistance. Antimicrobial Agents and Chemotherapy66(4), pp.e02181-21.
  15. Ghosh, S., Sun, B., Jahagirdar, D., Luo, D., Ortega, J., Straubinger, R.M. and Lovell, J.F., 2022. Single-treatment tumor ablation with photodynamic liposomal irinotecan sucrosulfate. Translational Oncology19, p.101390.
  16. Gu, Y., Li, S., Lin, Q., Ma, Y., Qian, L., Wang, L., Wang, X., Wang, F., Zhao, Y., He, H. and Zhou, F., 2022. A crosscorrelation methodology for in vivo pharmacokinetic study by the trans-scale fluorescent system.
  17. Hu, S., Datta-Mannan, A. and D’Argenio, D.Z., 2022, December. Physiologically based modeling to predict monoclonal antibody pharmacokinetics in humans from in vitro physiochemical properties. In MAbs (Vol. 14, No. 1, p. 2056944). Taylor & Francis.
  18. Hu, S., Datta-Mannan, A. and D’Argenio, D.Z., 2022. Monoclonal antibody pharmacokinetics in cynomolgus monkeys following subcutaneous administration: physiologically based model predictions from physiochemical properties. The AAPS Journal25(1), p.5.
  19. Jacobsson, S., Golparian, D., Oxelbark, J., Franceschi, F., Brown, D., Louie, A., Drusano, G. and Unemo, M., 2022. Pharmacodynamic evaluation of zoliflodacin treatment of Neisseria gonorrhoeae strains with amino acid substitutions in the zoliflodacin target GyrB using a dynamic hollow fiber infection model. Frontiers in Pharmacology13, p.874176.
  20. Jacobsson, S., Golparian, D., Oxelbark, J., Wicha, W.W., da Costa, R.M.A., Franceschi, F., Brown, D., Louie, A., Gelone, S.P., Drusano, G. and Unemo, M., 2022. Pharmacodynamic evaluation of lefamulin in the treatment of gonorrhea using a hollow fiber infection model simulating Neisseria gonorrhoeae infections. Frontiers in Pharmacology13, p.1035841.
  21. Jacobsson, S., Golparian, D., Oxelbark, J., Wicha, W.W., da Costa, R.M.A., Franceschi, F., Brown, D., Louie, A., Gelone, S.P., Drusano, G. and Unemo, M., 2022. Pharmacodynamic evaluation of lefamulin in the treatment of gonorrhea using a hollow fiber infection model simulating Neisseria gonorrhoeae infections. Frontiers in Pharmacology13, p.1035841.
  22. Jeong, Y.S. and Jusko, W.J., 2022. Determinants of Biological Half-Lives and Terminal Slopes in Physiologically Based Pharmacokinetic Systems: Assessment of Limiting Conditions. The AAPS journal24(5), p.96.
  23. Kiesel, B.F., Deppas, J.J., Guo, J., Parise, R.A., Clump, D.A., Bakkenist, C.J. and Beumer, J.H., 2022. Dose-dependent bioavailability, absorption-rate limited elimination, and tissue distribution of the ATR inhibitor BAY-1895344 (elimusertib) in mice. Cancer chemotherapy and pharmacology89(6), pp.795-807.
  24. Kiesel, B.F., Guo, J., Parise, R.A., Venkataramanan, R., Clump, D.A., Bakkenist, C.J. and Beumer, J.H., 2022. Dose-dependent bioavailability and tissue distribution of the ATR inhibitor AZD6738 (ceralasertib) in mice. Cancer chemotherapy and pharmacology89(2), pp.231-242.
  25. Kim, S., Louie, A., Drusano, G.L., Almoslem, M., Kim, S., Myrick, J., Nole, J., Duncanson, B., Peloquin, C.A., Scanga, C.A. and Yamada, W., 2022. Evaluating the effect of clofazimine against Mycobacterium tuberculosis given alone or in combination with pretomanid, bedaquiline or linezolid. International journal of antimicrobial agents59(2), p.106509.
  26. Kweon, S., Jeong, Y.S., Chung, S.W., Lee, H., Lee, H.K., Park, S.J., Choi, J.U., Park, J., Chung, S.J. and Byun, Y., 2022. Metronomic dose-finding approach in oral chemotherapy by experimentally-driven integrative mathematical modeling. Biomaterials286, p.121584.
  27. Lee, D.Y., Shin, S., Kim, T.H. and Shin, B.S., 2022. Establishment of Level a In Vitro–In Vivo Correlation (IVIVC) via Extended DoE-IVIVC Model: A Donepezil Case Study. Pharmaceutics14(6), p.1226.
  28. Li, X. and Jusko, W.J., 2022. Assessing Liver-to-Plasma Partition Coefficients and In Silico Calculation Methods: When Does the Hepatic Model Matter in PBPK?. Drug Metabolism and Disposition50(12), pp.1501-1512.
  29. Liu, X., Cheruvu, H.S., Anissimov, Y.G., van der Hoek, J., Tsakalozou, E., Ni, Z., Ghosh, P., Grice, J.E. and Roberts, M.S., 2022. Percutaneous absorption of steroids from finite doses: Predicting urinary excretion from in vitro skin permeation testing. International Journal of Pharmaceutics625, p.122095.
  30. Lodise, T.P., Scheetz, M., Carreno, J.J., Chambers, H., Fowler Jr, V. and Holland, T.L., 2022, February. Associations between vancomycin exposure and acute kidney injury within the recommended area under the curve therapeutic exposure range among patients with methicillin-resistant staphylococcus aureus bloodstream infections. In Open Forum Infectious Diseases (Vol. 9, No. 2, p. ofab651). US: Oxford University Press.
  31. Lopez-Montesinos, I., Montero, M.M., Domene-Ochoa, S., López-Causapé, C., Echeverria, D., Sorlí, L., Campillo, N., Luque, S., Padilla, E., Prim, N. and Grau, S., 2022. Suboptimal concentrations of ceftazidime/avibactam (CAZ-AVI) may select for CAZ-AVI resistance in extensively drug-resistant Pseudomonas aeruginosa: in vivo and in vitro evidence. Antibiotics11(11), p.1456.
  32. Lopez-Montesinos, I., Montero, M.M., Domene-Ochoa, S., López-Causapé, C., Echeverria, D., Sorlí, L., Campillo, N., Luque, S., Padilla, E., Prim, N. and Grau, S., 2022. Suboptimal concentrations of ceftazidime/avibactam (CAZ-AVI) may select for CAZ-AVI resistance in extensively drug-resistant Pseudomonas aeruginosa: in vivo and in vitro evidence. Antibiotics11(11), p.1456.
  33. Mettu, N.B., Ulahannan, S.V., Bendell, J.C., Garrido-Laguna, I., Strickler, J.H., Moore, K.N., Stagg, R., Kapoun, A.M., Faoro, L. and Sharma, S., 2022. A phase 1a/b open-label, dose-escalation study of etigilimab alone or in combination with nivolumab in patients with locally advanced or metastatic solid tumors. Clinical Cancer Research28(5), pp.882-892.
  34. Meyer, L.F., Rajadhyaksha, P.M. and Shah, D.K., 2022. Physiologically-based pharmacokinetic model for 2, 4-dinitrophenol. Journal of Pharmacokinetics and Pharmacodynamics49(3), pp.325-336.
  35. Mukherjee, B., 2022. Pharmacokinetic Software and Tools. In Pharmacokinetics: Basics to Applications (pp. 227-232). Singapore: Springer Singapore.
  36. Nix, D.E., Davis, L.E. and Matthias, K.R., 2022. Response to Rybak et al. American Journal of Health-System Pharmacy79(16), pp.1308-1311.
  37. Okoniewski, R., 2022. Pharmakokinetik von Cefuroxim in der Wirbelsäule (Doctoral dissertation, Dissertation, Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 2022).
  38. Qin, Y., Zhang, L.L., Ye, Y.R., Chen, Y.T. and Jiao, Z., 2022. Parametric population pharmacokinetics of linezolid: a systematic review. British Journal of Clinical Pharmacology88(9), pp.4043-4066.
  39. Qin, Y., Zhang, L.L., Ye, Y.R., Chen, Y.T. and Jiao, Z., 2022. Population Pharmacokinetics of Linezolid: A Systematic Review. Authorea Preprints.
  40. Sharma, R., Garcia, E., Diep, J.K., Lee, V.H., Minhaj, F., Jermain, B., Ellis-Grosse, E.J., Abboud, C.S. and Rao, G.G., 2022. Pharmacodynamic and immunomodulatory effects of polymyxin B in combination with fosfomycin against KPC-2-producing Klebsiella pneumoniae. International Journal of Antimicrobial Agents59(4), p.106566.
  41. Sharma, R., Garcia, E., Diep, J.K., Lee, V.H., Minhaj, F., Jermain, B., Ellis-Grosse, E.J., Abboud, C.S. and Rao, G.G., 2022. Pharmacodynamic and immunomodulatory effects of polymyxin B in combination with fosfomycin against KPC-2-producing Klebsiella pneumoniae. International Journal of Antimicrobial Agents59(4), p.106566.
  42. Smith, N.M., Boissonneault, K.R., Chen, L., Petraitis, V., Petraitiene, R., Tao, X., Zhou, J., Lang, Y., Kavaliauskas, P., Bulman, Z.P. and Holden, P.N., 2022. Mechanistic Insights to Combating NDM-and CTX-M-Coproducing Klebsiella pneumoniae by Targeting Cell Wall Synthesis and Outer Membrane Integrity. Antimicrobial Agents and Chemotherapy66(9), pp.e00527-22.
  43. Tait, J.R., Barnett, T.C., Rogers, K.E., Lee, W.L., Page-Sharp, M., Manning, L., Boyd, B.J., Carapetis, J.R., Nation, R.L. and Landersdorfer, C.B., 2022. Penicillin G concentrations required for prophylaxis against Group A Streptococcus infection evaluated using a hollow fibre model and mathematical modelling. Journal of Antimicrobial Chemotherapy77(7), pp.1923-1930.
  44. Talapphetsakun, T., Viyoch, J., Waranuch, N. and Sermsappasuk, P., 2022. The Development of a Physiologically Based Pharmacokinetic (PBPK) Model of Andrographolide in Mice and Scaling it up to Rats, Dogs, and Humans. Current Drug Metabolism23(7), pp.538-552.
  45. Tam, V.H., Merlau, P.R., Hudson, C.S., Kline, E.G., Eales, B.M., Smith, J., Sofjan, A.K. and Shields, R.K., 2022. Optimal ceftazidime/avibactam dosing exposure against KPC-producing Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy77(11), pp.3130-3137.
  46. Touw, D.J. and van den Anker, J.N., 2022. Therapeutic drug monitoring of antimicrobial drugs in neonates: an opinion article. Therapeutic Drug Monitoring44(1), p.65.
  47. Weiss, M., D’Argenio, D.Z. and Siegmund, W., 2022. Analysis of complex absorption after multiple dosing: application to the interaction between the P-glycoprotein substrate talinolol and rifampicin. Pharmaceutical Research39(12), pp.3293-3300.
  48. Wirth, F., Staudt, K.J., Araújo, B.V. and Ishida, K., 2022. Experimental models for pharmacokinetic and pharmacodynamic studies of antifungals used in cryptococcosis treatment. Future Microbiology17(12), pp.969-982.
  49. Wójcik-Pszczoła, K., Szafarz, M., Pociecha, K., Słoczyńska, K., Piska, K., Koczurkiewicz-Adamczyk, P., Kocot, N., Chłoń-Rzepa, G., Pękala, E. and Wyska, E., 2022. In silico and in vitro ADME-Tox analysis and in vivo pharmacokinetic study of representative pan-PDE inhibitors from the group of 7, 8-disubstituted derivatives of 1, 3-dimethyl-7H-purine-2, 6-dione. Toxicology and Applied Pharmacology457, p.116318.
  50. Wu, S., Le Prieult, F., Phipps, C.J., Mezler, M. and Shah, D.K., 2022. PBPK model for antibody disposition in mouse brain: validation using large-pore microdialysis data. Journal of Pharmacokinetics and Pharmacodynamics49(6), pp.579-592.
  51. Yang, J., Jing, J., Chen, S., Liu, X., Tang, Y., Pan, C. and Tang, Z., 2022. Changes in Cerebral Blood Flow and Diffusion-Weighted Imaging Lesions After Intracerebral Hemorrhage. Translational Stroke Research13(5), pp.686-706.
  52. Yang, Z., Loy, J., Poirson, B., Dai, Y., Rajendran, S., Xu, S., Spires, V., Gururajan, M., Lin, Z., Arbanas, J. and Carl, S., 2022. Application of pharmacokinetic/pharmacodynamic modeling to bridge mouse antitumor efficacy and monkey toxicology data for determining the therapeutic index of an interleukin-10 Fc fusion protein. Frontiers in Pharmacology13, p.829063.
  53. Yin, A., van Hasselt, J.G., Guchelaar, H.J., Friberg, L.E. and Moes, D.J.A., 2022. Anti-cancer treatment schedule optimization based on tumor dynamics modelling incorporating evolving resistance. Scientific Reports12(1), p.4206.
  54. Zygmunt, M., Ślusarczyk, M., Jankowska, A., Świerczek, A., Bryła, A., Mogilski, S., Kazek, G., Sapa, J., Wyska, E. and Chłoń-Rzepa, G., 2022. Evaluation of analgesic and anti-inflammatory activity of purine-2, 6-dione-based TRPA1 antagonists with PDE4/7 inhibitory activity. Pharmacological Reports74(5), pp.982-997.