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Abstract

In this article, we introduce an efficient method that models quantitatively nonlinear dynamics associated with short-term

plasticity (STP) in biological neural systems. It is based on the Voterra�/Wiener modeling approach adapted for special stimulus/

response datasets. The stimuli are random impulse trains (RITs) of fixed amplitude and Poisson distributed, variable interimpulse

intervals. The class of stimuli, we use can be viewed as a hybrid between the paired impulse approach (variable interimpulse interval

between two input impulses) and the fixed frequency approach (impulses repeated at fixed intervals, varying in frequency from one

stimulus dataset to the next). The responses are sequences of population spike amplitudes of variable size and are assumed to be

contemporaneous with the corresponding impulses in the RITs they are evoked by. The nonlinear dynamics of the mechanisms

underlying STP are captured by kernels used to create compact STP models with predictive capabilities. Compared to similar

methods in the literature, the method presented in this article provides a comprehensive model of STP with considerable

improvement in prediction accuracy and requires shorter experimental data collection time.
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1. Introduction

Experimental studies investigating short-term plasti-

city (STP) use impulse sequence stimuli, as this type of

signal comprises the most common form of input in

biological neural systems. In particular, paired pulse

stimulation of variable interimpulse intervals (Creager et

al., 1980; Leung and Fu, 1994; Dobrunz et al., 1997) and

short impulse trains at a fixed frequency (Yamamoto et

al., 1980; Turner and Miller, 1982; Landfield et al., 1986;

Abbot et al., 1997; Fueta et al., 1998; Pananceau et al.,

1998), varying from one impulse train to another, have

been used widely in experimental STP research. Each

method identifies areas of facilitation and inhibition

within the STP mechanisms only for a limited number of

interimpulse intervals or impulse train frequencies.

Using these methods, extension of the experimental

protocol to cover a wide range of intervals and

frequencies may prolong the experimental time to the

point where the viability of the experimental preparation

may not be viable or stable.

In this article, we present a new method to quantita-

tively describe STP in biological neural systems that uses

impulse sequence stimuli of randomly variable inter-

impulse interval. The new method innovates in combin-

ing impulse sequence stimuli with quantitative STP

descriptors derived using the Volterra�/Wiener modeling

approach (Wiener, 1958), adapted for impulse sequences

of randomly varying interimpulse intervals at the input

(Krausz and Friesen, 1975; Sclabassi et al., 1988). The

output is the corresponding sequence of variable ampli-

tude population spikes. Each population spike was

recorded a short latency after the corresponding input

impulse. Our choice of stimuli can be viewed as a hybrid

of the variable interimpulse intervals used by the paired

pulse approach and the pattern of repeated impulses at

fixed intervals (with variable repetition rates from run to

run) utilized by the fixed frequency approach.
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The new approach leads to a comprehensive and

compact representation of the nonlinear dynamics

associated with STP in the form of a mathematical

model. The latter comprises accurate STP descriptors
(kernels) that are estimated from the input�/output data

and can be validated by means of their predictive

capabilities for any input sequence. Compared to

existing methods reported in the literature, the method

presented in this article provides a compact representa-

tion of STP dynamics with considerable improvement in

prediction accuracy and requires shorter experimental

data collection time.
We have applied our method to the CA1 subregion of

the hippocampus in vitro, since it has been a widely

utilized experimental preparation (Andersen et al., 1971)

in previous research for understanding STP (Creager et

al., 1980; Leung and Fu, 1994), drug toxicity (Nelson et

al., 1999; Alberston et al., 1996; Colmers et al., 1985),

long-term potentiation (Bliss and Lomo, 1973; Harris

and Teyler, 1983; Wheal et al., 1983; Harris et al., 1984),
and genetic alterations (Krugers et al., 1997). However,

the developed methodology is readily transferable to

other hippocampal regions (e.g. Perforant Path�/Den-

tate, mossy fibers-CA3) and to different biological

preparations (e.g. midbrain and cortex).

This article is organized into sections on: (1) materials

that describes the experimental setup; (2) methods that

presents the data collection protocol and the data
analysis approach; and (3) results that presents the

obtained STP descriptors (kernels); outlines areas of

facilitation and inhibition; describes the selection pro-

cess of the estimation parameters; presents the use of

empirically optimized impulse sequence stimuli with

high interimpulse interval variability; presents valida-

tion results for the STP descriptors and demonstrates

their predictive capabilities; and compares the proposed
method with the cross-correlation approach (Berger et

al., 1988a,b, 1989) for the estimation of the STP

descriptors. Section 5 concludes the article, summarizing

the experimental and computational improvements

associated with the new method.

2. Materials

2.1. Biological preparations

Adult rats were completely anesthetized with Ha-

lothane and were decapitated. Their brain was extracted

and transferred to a bath containing iced aCSF (128

mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 26 mM

NaHCO3, 10 mM glucose, 2 mM MgSO4, 2 mM
ascorbic acid, 2 mM CaCl2). The hippocampus was

extracted and transverse slices (500 mm of thickness)

were collected using a Leika vibrotome (VT 1000S). The

slices were then left to equilibrate for 1 h in aCSF at

room temperature.

2.2. Hardware

Extracellular recordings were achieved using a multi-

electrode array. The setup consisted of a multimicroelc-

trode plate (MMEP4, Gross et al., 1993; Univ. North
Texas, www.cnns.org), pre-amplifiers, two data acquisi-

tion boards, and custom-developed software. The

MMEP, a 64 electrode-array, designed in an 8�/8

formation (MMEP 4 design), had an inter-electrode

distance of 150 mm. Contacts at the periphery (32 from

each side) were implemented using zebra strips. The

signals were amplified �/2500 in two stages. In the first

stage, �/250 amplification was achieved using custom-
manufactured Plexon preamplifiers (www.plexoninc.-

com). In the second stage, signals were amplified (�/

10) and digitized using two data acquisition boards

(Microstar; DAP 3200/214e series, http://www.mstar-

labs.com), installed in parallel, in a PentiumII 450 MHz

personal computer. The sampling interval was set at 136

ms (7.35 kHz) per channel. Except for the computer, the

experimental setup was housed in a Faraday cage on an
antivibration table.

2.3. Software

A customized user interface written in Matlab con-

trolled the two data acquisition boards. Another user

interface was developed for nonlinear analysis, allowing

the simultaneous extraction and nonlinear analysis of

the population spikes of four simultaneous recordings

from four different channels.

3. Methods

3.1. Slice positioning

Each slice was positioned over the multielectrode

array with the guidance of an inverted microscope

(Leica DML 4�/). The hippocampal slice was held
down using a nylon mesh glued to a metallic ring. The

slice, along with the metallic ring, was moved with a thin

brush in order to position the CA1 cell body layer over a

row of electrodes. Four electrodes near the cell body

layer were selected for recording. A bipolar stimulation

electrode (twisted Nichrome wires) was placed in the

Schaffer collaterals region. After documenting the

relative position of the slice with respect to the array
(Fig. 1), using an analogue camera (Hitachi VK-C370),

the slice was left for 15 min to equilibrate. The

temperature was maintained at 30 8C.
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3.2. Random impulse train design

The CA1 population of neurons was stimulated with

impulse trains (at 2 Hz average), whose interimpulse

intervals followed a Poisson distribution. Such stimuli
provide frequency rich sequences at a frequency range

that does not cause LTP or LTD in pyramidal cells

(Berger et al., 1988a; Perrett et al., 2001). A sequence of

4000 computer generated, Poisson distributed (2 Hz)

intervals, were divided into 20 segments of 200 impulses

each and were called random impulse trains (RITs).

3.3. Protocol of data collection

At the beginning of each experiment, an input�/output
curve was collected. The stimulation intensity for the

rest of the experiment was set so that the population

spike response would be at 10�/30% of the maximum

population spike response obtained via the IO curve

(Berger et al., 1988b). Subsequently, twenty stimulation

sequences were applied successively to the biological

preparation. Each stimulation sequence consisted of a

pair of pulses (pp) 30 ms apart, followed by a random
impulse train (RIT) of 200 pulses (Poisson distributed

interimpulse intervals with a mean of 2 Hz) 30 s later

and 5 min of resting time. The interval between the

beginning and the end of each stimulation sequence

(paired pulse�/RIT�/5 min of resting time) was ap-

proximately 7 min.

The population spike amplitudes of the paired pulse

evoked responses were used to evaluate the slice’s
electrophysiological stability. The experiment was dis-

continued if the response amplitude varied by more than

9/20% from the baseline.

3.4. Data preprocessing

The data collected simultaneously from four different

sites was analyzed off-line. The population spike ampli-

tudes were extracted using the following rules based on a

peak latency range of 4�/11 ms: (1) when an electrical

impulse within a random train was followed by another

electrical impulse after 20 ms or more, the population

spike amplitude was measured by taking the distance

between the negative minimum and the corresponding

midpoint on the line joining the two positive peaks; (2)

when an electrical impulse within a random train was

followed by another electrical impulse within 11�/20 ms,

the amplitude was measured by taking the difference

between the first peak and the negative minimum; (3)

when an electrical impulse within a random train was

followed by another electrical impulse in less then 11 ms,

the response for the first impulse was interpolated.

The population spike responses were checked for the

quality of the waveform by visually evaluating five non-

adjacent random train recordings. A recording was

accepted for subsequent analysis if all the responses

showed well-defined populations spikes overriding well-

defined evoked postsynaptic potentials (Fig. 2). Since

the latency was not taken into consideration, the

population spike responses were considered to be

contemporaneous with the stimulus occurrence and

were represented as variable amplitude impulses (Fig.

3). The waveshape of the population spikes, which may

vary considerably depending on the input sequence, was

not part of our analysis.

Fig. 1. Picture of a hippocampal slice positioned over the multi-

electrode (8�/8) array. Each black dot represents an electrode. The

blackened electrodes show recording sites from CA1.

Fig. 2. Acceptable recorded waveforms: (A) acceptable waveform; (B)

good waveform; (C) excellent waveform. A recording was accepted for

subsequent analysis if the responses showed well-defined population

spikes overriding well-defined evoked postsynaptic potentials. The

population spike amplitude was measured by taking the distance

between the negative minimum and the corresponding midpoint on the

line joining the two positive peaks (line segments with arrows).
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Recordings were checked for stability by plotting the

mean of each response sequence against its number of

occurrence during the recording. If the means of all the

random train responses were within 9/15% of the total

mean, the data was saved for subsequent analysis (Fig.

4).

3.5. Analytical methods

The data was analyzed using a variant of the

Volterra�/Wiener approach adapted for fixed amplitude

random impulse sequence stimuli and variable ampli-
tude spike output sequences (Courellis et al., 2000). The

adapted Volterra�/Wiener approach considers the inter-

impulse intervals as input and the amplitude of the

population spikes as output. It also assumes that the

population spike responses and the impulse stimuli that

evoked them are contemporaneous. In our analysis, we

employed the first- and second-order kernels, enabling

us to construct the model shown in Eq. (1):

y(ni)�k1�
X

ni�mBnjBni

k2(ni�nj) (1)

where ni is the time of occurrence of the ith stimulus

impulse and the corresponding response, nj is the time of

occurrence of the jth stimulus impulse preceding the ith

stimulus impulse, y(ni) is the amplitude of the popula-
tion spike in response to the impulse that occurred at

time ni , m is the memory of the biological system, k1 is

the first-order kernel and k2 is the second-order kernel.

Fig. 3. Extraction of the population spike amplitude: (A) the stimulation artifact and the corresponding population spike waveform; (B) input

aligned with the stimulus artifact; (C) extracted population spike amplitudes. Since the latency was not taken into consideration, the population spike

responses were considered to be contemporaneous with stimulus occurrence and were represented as sharp spikes.
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Eq. (1) describes the amplitude of the population spike

at time (ni) in terms of the first-order kernel (k1) and the

second-order kernel (k2) at all values corresponding to

time intervals from past impulses within the memory m .

The kernels, k1 and k2, capture the nonlinear dynamics

of the underlying STP mechanisms and represent

quantitative STP descriptors.

The first- and second-order kernels in the classical

Volterra�/Wiener sense are one- and two-dimensional

functions respectively. In this article, the first-order

kernel is a constant and the second-order kernel is a

one-dimensional function. This is due to the fact that we

do not consider variability in the latency between an

impulse at the stimulus sequence and the population

spike response evoked by it (Krausz and Friesen, 1975;

Berger et al., 1988a; Sclabassi et al., 1988). The kernels

in this case can be thought of as reduced order Poisson�/

Wiener kernels. The term ‘reduced’ is appropriate

because of the reduced dimensionality of the kernels,

the term ‘Poisson’ is used because the kernels are tied to

a Poisson input, and the term ‘Wiener’ is included

because the kernels are associated with an orthogonal

functional expansion for Poisson inputs and are input

dependent (i.e. different Poisson input mean rate para-

meters will yield different kernels, in general).

We used the Laguerre�/Volterra method (Marmarelis,

1993) to estimate the kernels, an approach that reduces

the kernel estimation effort to the computation of the

coefficients of a set of Laguerre functions. The Laguerre

basis functions form an orthonormal set and are defined
as follows:

Ll(n)�a(n�1)=2(1�a)1=2
Xl

k�0

(�1)k n

k

� �

� l

k

� �
a(l�k)(1�a)k (2)

where Ll ( ) is the Laguerre basis function of lth order

and alpha (a ) is a parameter that varies between 0 and 1

and affects the time extent of the basis functions. The

order of a Laguerre function corresponds to the number

of times the function crosses the ‘zero line’. Fig. 5A

shows the 0th, 2nd, and 4th order Laguerre functions for
a fixed value of alpha (a�/0.94). Fig. 5B shows the 2nd

order Laguerre functions for a�/0.90, 0.94 and 0.95.

Using L Laguerre basis functions, the second order

kernel can be expressed as:

k2(ni�nj)�
XL�1

l�0

clLl(ni�nj) (3)

where Ll( ) is the lth order Laguerre function and cl is

the corresponding expansion coefficient. Combining

Eqs. (1) and (3), we obtain:

Fig. 4. Primary check for stability: each square represents the mean of the population spike amplitudes for each RIT (200 pulses) in the recording (20

RITs). If all mean values were within 9/15% (outer black lines) of their average (middle line), the data was saved for subsequent analysis.
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�
y(ni)�k1�

X
ni�mBnjBni

XL�1

l�0

clLl(ni�nj)

�
i�1;...; N

(4)

Since cl are constant, Eq. (4) can be rearranged as

follows:�
y(ni)�k1�

X
l

cl

X
ni�mBnjBni

Ll(ni�nj)

�
i�1;...; N

(5)

Eq. (5) applies to every population spike amplitude

[y (ni )] in the dataset. The first-order kernel (k1) and the

Laguerre coefficients (cl) are calculated using the min of

least squares error on the set of N equations expressed

by Eq. (5). For example, 4000 equations are formed

using all twenty RITs in order to calculate the value of

k1 and the Laguerre coefficients (cl) that lead to the

estimation of k2 using Eq. (3).

Fig. 5. Example of Laguerre basis functions: (A) 0th, 2nd and 4th order Laguerre functions for a�/0.94. The order of the function correlates with the

number of times it crosses the zero line. (B) The 2nd order Laguerre function for different values of alpha (a�/0.90, 0.94, 95). As alpha increases, the

time extent of the Laguerre functions increases.
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The kernel estimates can be interpreted as follows: the

first-order kernel can be interpreted as the mean of the

population spike amplitude, while the second-order

kernel represents the effect of the interaction between

the current impulse stimulus and past stimulus impulses

(within a memory window m ) on the amplitude of the

current population spike (facilitation for positive values

and inhibition for negative values). The role of the first-

and second-order kernel in the model shown in Eq. (1) is

illustrated in Fig. 6. The first-order kernel contributes a

constant value to the model response and the second-

order kernel provides the requisite amplitude adjust-

ment, based on the time interval between the current

impulse and past impulses that occurred within a

memory window m . Throughout this article, we have

normalized the values of the second-order kernels by

dividing them with the corresponding value of the first-

order kernels. Thus, second-order kernels represent

percentage adjustments with respect to the first-order

kernel.

The predictive accuracy of the estimated kernels is

evaluated using the normalized mean square error

(NMSE), defined as follows:

NMSE�

X
i

(Ypr � Ydatai
)2

X
i

Y 2
datai

(6)

where Ypr is the predicted amplitude of the population

spikes using the estimated kernels and Ydata is the actual

amplitude extracted from the recorded data. The NMSE

is a measure of how well kernels can capture the system

nonlinear dynamics. If the NMSE value is small, the

kernels model the biological system very well. If the
NMSE value is large, either the quantitative model

requires higher order terms (kernels) to be included or

the data are noisy and/or unreliable.

In establishing a measure of comparison with existing

methods, we employed the cross-correlation method for

kernel estimation (Krausz and Friesen, 1975; Berger et

Fig. 6. Predictive power of the kernels. (A) A series of input electrical stimuli applied through a stimulating electrode to the Schaffer Collaterals

where ?t indicate the time difference between the present impulse and the past impulses. (B) The corresponding recorded population spikes. The

amplitude of each population spike was measured as the difference of the distance between the population spike minimum and the midpoint of the

line that joins the two positive peaks. (C) The first- and second-order kernel. The amplitude of the response for the last impulse (bold arrow, at 1650

ms) can be estimated using the first-order kernel, the second-order kernel, and Eq. (1) as follows: y (1650)�/k1�/k2(1650�/1620)�/k2(1650�/1250)�/

k2(1650�/850)�/k2(1650�/150)�/k1�/k2(?t1)�/k2(?t2)�/k2(?t3)�/k2(?t4)�/k1�/k2(30)�/k2(400)�/k2(800)�/k2(1500)�/350�/340�/30�/30�/0�/630 mV.
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al., 1988a; Sclabassi et al., 1988). The resulting kernels

were compared to kernels obtained using the presented

approach.

4. Results

The experimental effort consisted of six experiments,
including four simultaneous recordings from each

experiment, a total of 24 recordings. Each recording

was comprised of population spike responses to twenty

stimulus sequences. Each stimulus sequence was formed

by combining one pulse pair, one RIT (a sequence of

fixed amplitude impulses, whose interimpulse interval

followed a Poisson distribution), and 5 min of resting

time. We used the adapted Volterra�/Wiener method to
analyze the STP nonlinear dynamic characteristics

captured by the estimated kernels.

4.1. Determining the estimation parameters (L and

alpha) for the adapted Volterra�/Wiener approach

The number of the Laguerre basis functions L (Eq.

(3)) and the value of the parameter alpha (a ) for

estimating the kernels were chosen to minimize the

NMSE. Fig. 7A shows the NMSE associated with one

recording, plotted over a range of a values between 0.7

and 0.99, and for L�/5, 7, 9, 11 Laguerre basis
functions. The choice of L�/9 and a�/ 0.93 provided

optimal kernel estimates resulting in a NMSE of 3.6%.

Fig. 7B shows first- and second-order kernels for a�/

0.93 and L�/5, 7, 9. The first-order kernel (k1, mean

population spike) fluctuated only within 5%, while

second-order kernels (k2) exhibited an initial rising

phase, followed by a fast relaxation phase, and crossed

into a shallow inhibitory phase shortly after 100 ms.
Variation in the number of the Laguerre functions L

and the parameter alpha affected mainly the inhibitory

phase, extending its duration as L and alpha increased

(e.g. Fig. 7B). A plot of the Laguerre coefficients values

for a�/0.93 shown in Fig. 7C confirmed that L�/9 is a

good choice, as the value of the Laguerre coefficients

becomes negligible for L �/9.

Results from the analysis of two more recordings are
shown in Fig. 8. Fig. 8B,D show NMSE curves plotted

over a for L�/5, 7, 9, 11. The choice of L�/9 still

minimizes NMSE. The minimum NMSE value of 4.8%

occurred at a�/0.93 for the first recording (Fig. 8B) and

the minimum NMSE value of 9% occurred at a�/0.94

for the second recording (Fig. 8D). The corresponding

kernel estimates for L�/9 are shown in Fig. 8A,C

respectively. Using L�/9 and the same range of a , we
computed kernels based on datasets from simultaneous

recordings of four output channels (Fig. 9). The

associated NMSE values were 1.36% for channel 20,

2.23% for channel 21, 1.71% for channel 22, and 2.56%

for channel 26.

Across all the recordings, the NMSE was in the range

of 1�/9% suggesting the potential for a third-order
kernel. Alpha had a mean value of 0.93 and a standard

deviation of 9/0.01. Fig. 10 shows the mean and the

variability of each Laguerre coefficient across all twenty-

four recordings, normalized to the peak facilitation of

the second-order kernel. It can be readily inferred that

all the computed second-order kernels from all the

recordings have approximately the same shape. In

particular, the second-order kernels (describing STP
nonlinear dynamics), exhibited a facilitation peak be-

tween 25 and 35 ms, a fast rising phase [0�/30 ms] before

the peak, and a fast facilitatory relaxation phase after

the peak, crossing to the inhibitory region around 100�/

120 ms and returning to the baseline within 1600�/2000

ms (memory extent), i.e. impulses that occurred after the

return to the baseline had no effect on the amplitude of

the population spike evoked by the present impulse.
These results confirm that L�/9 and 0.92B/aB/0.94

lead to good kernel estimates.

4.2. Empirical optimization of the stimulus train

In each recording, the stimulus sequence included

twenty independent RITs of 200 pulses each, resulting in

long recording periods that impacted the viability of the

experimental preparation and increased the computa-
tional burden of estimating the kernels. To address this

issue, we tried to empirically explore the use of a subset

of RITs leading to shorter stimulus sequences while

maintaining the quality of the kernel estimates across all

recordings.

We exhaustively searched various RIT combinations

and found that two RITs (namely RIT #5 and RIT #11)

were sufficient to form a stimulus sequence, which
yielded first- and second-order kernel estimates compar-

able to the ones obtained with twenty RITs. In Fig. 11,

kernels obtained using the two RITs are compared with

kernels obtained from all twenty RITs using the

proximity of k1 and k2 values and the respective

NMSE curves. Fig. 11A, C and E show the first- and

second-order kernels obtained from three recordings

using all twenty RITs (black) and their counterparts
using only RIT #5 and RIT #11 (gray). The proximity

exhibited by k1 values was within 5% and the visual

assessment between corresponding second-order kernels

revealed very strong similarities. Moreover, the correla-

tion coefficient between k2 values (�/0.99) confirmed

the strong similarity between the estimated second-order

kernels using all twenty RITs and the second-order

kernel estimates using only RITs #5 and #11. Finally,
the NMSE curves corresponding to RITs #5 and #11

shown in Fig. 11B, D and F are comparable to the ones

corresponding to all 20 RITs depicted in Figs. 7A and
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8B,D and provide a NMSE minimum of less then 4.41%

at L�/9.

The assessment criteria confirmed that, in our case,

the two RITs (namely #5 and #11) were adequate to

Fig. 7. Determination of the number of Laguerre basis functions L and the range of the alpha (a ) parameter: (A) NMSE, associated with one

recording, plotted over a range of a values between 0.7 and 0.99, and for L�/5(I),7(�/),9(k),11(�/). The choice of L�/9 and a�/0.93 provided

kernel estimates resulting in a NMSE of 3.60%. (B) First- and second-order kernel estimates for L�/5, 7 and 9. The estimated mean population spike

k1 (first-order kernel) fluctuated only by 5%. The estimated second-order kernels exhibited an initial rising phase, followed by a fast relaxation phase,

and a shallow inhibitory phase. Variation in the number of the Laguerre functions L affected mainly the inhibitory phase, extending its duration as L

increased. (C) A plot of the Laguerre coefficient values for L�/21 and a�/0.93. It confirms that L�/9 is a good choice, as the values of the

coefficients become insignificant for L �/9.
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Fig. 8. Analysis of two more recordings: (B) and (D) show the NMSE curves plotted over a and parameterized in L . The choice of L�/9 and a�/

0.93 and 0.94, respectively, leads to good kernel estimates and NMSE of 9.61 and 5.16% respectively. (A) and (C) show the corresponding first- and

second-order kernels.

Fig. 9. Computed kernels based on datasets from simultaneous recordings of four output channels. The associated NMSE values were 1.36% for

channel 20, 2.23% for channel 21, 1.71% for channel 22, and 2.56% for channel 26.
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estimate the nonlinear dynamics of the biological system

under study using the adapted Volterra�/Wiener ap-

proach. This empirical optimization reduced the re-
quired number of RITs, in our case, by a tenfold and

decreased the experimental time from 2 h to approxi-

mately 5 min. Finally, we computed the histograms of

the interimpulse intervals of the various RIT combina-

tions we tested and observed that the histogram of the

interimpulse intervals of RITs #5 and #11 spanned the

system memory more densely than the histograms of

other RIT combinations. In general, one could empiri-
cally determine combinations of RITs suitable for their

case by trying various RIT combinations and applying

the assessment criteria presented earlier in this section.

4.3. Predictive power of the STP descriptors

In addition to providing a quantitative description of

the nonlinear dynamics of the underlying STP, the

kernels have predictive capabilities when used in con-
junction with the STP model of Eq. (1). The STP

model’s (Eq. (1)) predictive capabilities are illustrated in

Fig. 12. Fig. 12A,B show in-sample prediction while Fig.

12C shows out-of-sample prediction.

Fig. 12A shows a segment of population spike

amplitudes (black squares) taken from RIT #11 and

the corresponding model prediction (overlaid gray

circles). The predicted output was estimated using first-
and second-order kernels that were calculated from all

the 20 input�/output datasets and the associated NMSE

value was 1.83%. Fig. 12B shows the same response data

segment (black squares) predicted using first- and

second-order kernels estimated from the empirically

optimized dataset corresponding to RITs #5 and #11

(gray circles). In this case, the NMSE value was 1.37%.
Comparison between Fig. 12A,B, and the associated

NMSE values illustrates the predictive quality of the

STP model in the case of non-optimized and optimized

stimulus, respectively.

The predictive power can be fully illustrated using

out-of-sample prediction where the system output for a

stimulus dataset is predicted using kernels from a

different input/output dataset. Fig. 12C shows a seg-
ment of real data that belonged to RIT #15 (black

squares). The predicted output (gray circles) was esti-

mated using first- and second-order kernel estimates

using the input/output datasets corresponding to RIT

#5 and RIT #11. Visual assessment and the computed

NSME value of 4% illustrate the predictive power of the

kernels characterizing STP in the CA1 hippocampal

subsystem.
The STP model defined by Eq. (1) and the computed

kernels can also be used to estimate the population spike

amplitude of the conditioned response in paired impulse

experiments and the amplitudes of population spike

responses in fixed frequency experiments. In the case of

paired impulse stimuli, the conditioned response

ycond(D) can be estimated, using Eq. (1), as follows:

ycond�k1�k2(D) (7)

where D is the interimpulse interval between the two

stimulus impulses, k1 is the computed first-order kernel,

and k2 is the computed second-order kernel. Dividing

both sides of Eq. (8) by k1, we obtain the normalized

conditioned response ỹcond:

ỹcond�1�
k2(D)

k1

(8)

Using kernels computed previously and Eq. (8), we

obtained estimates of the conditioned response shown in

Fig. 13 for interimpulse intervals varying from 0 to 2000

ms. Fig. 13 suggests facilitatory behavior for interim-

pulse intervals between 0 and 200 ms and inhibitory

behavior for interimpulse intervals between 200 and

2000 ms. In the literature, research findings have
typically revealed facilitatory behavior for all interim-

pulse intervals (e.g. Dobrunz et al., 1997; Leung and Fu,

1994; Creager et al., 1980), but there are papers that

have reported facilitatory behavior followed by inhibi-

tory behavior (e.g. Stanford et al., 1995). The predic-

tions shown in Fig. 13 are based on computed kernels

from RIT stimuli and have not been validated with data

from paired impulse experiments yet.
In the case of fixed frequency impulse train stimuli,

the amplitude of the r th population spike response can

be estimated, using Eq. (1), as follows:

Fig. 10. The mean and variability of each Laguerre coefficient across

all the recordings normalized to the peak facilitation of the second-

order kernel. It can be readily inferred that all the computed second-

order kernels from all the recordings have approximately the same

shape and that the choice of L�/9 is suitable since the coefficient

values become low beyond the sixth coefficient (error bars represent 9/

S.D.).
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yr�k1�
Xr

r�1

k2(rD) (9)

where D is the interimpulse interval between successive

spikes in the impulse train stimulus, k1 is the computed

first-order kernel, and k2 is the computed first-order

kernel. Dividing both sides of Eq. (9) by k1, we obtain

the normalized response ỹr:

ỹr�1�
Xr

r�1

k2(rD)

k1

(10)

Using kernels computed previously and Eq. (10), we

obtained estimates of the amplitude of the population

spike response to the 2nd, 3rd, 4th, 5th and 6th impulse
(Fig. 14) for interimpulse intervals of 50, 75 and 100 ms.

Fig. 14 suggests facilitatory behavior (population spike

amplitudes greater than one), an observation consistent

Fig. 11. Kernels estimated using the empirically optimized stimulus sequence and their corresponding NMSE plots. (A), (C) and (E) show the first-

and second-order kernels obtained using the twenty RITs (k1a, black trace) and their counterparts using only RIT #5 and RIT #11 (k1b, gray trace).

(B), (D) and (F) show the corresponding NMSE curves. Visual assessment, NMSE values (B/4.41%), and the correlation coefficient (�/0.99) support

the strong similarity between the estimated kernels using all twenty RITs and the kernel estimates using only RITs #5 and #11.
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with results reported in the literature (Alger and Teyler,

1976; Creager et al., 1980; Papatheodoropoulos and

Kostopoulos, 2000). The predictions shown in Fig. 14

are based on computed kernels from RIT stimuli and

have not been validated with data from impulse train

experiments yet.

4.4. Results validation using the cross-correlation method

In order to establish continuity with previous work

and compare it with the proposed method, estimation of

the first- and second-order kernels was also performed

using the cross-correlation method (Krausz and Friesen,

Fig. 12. Predictive power of kernels. (A) In-sample estimation, 20 RITs: a segment of population spike amplitudes (black squares) was taken from

RIT #11. The predicted output (overlaid gray circles) was estimated using first- and second-order kernels that were calculated from all 20 input�/

output datasets. The NMSE value was 1.83%. (B) In-sample estimation, 2 RITs: the same data segment (black squares) shown in (A) is predicted

using first- and second-order kernels estimated from the empirically optimized dataset corresponding to RITs #5 and #11 (gray circles). In this case,

the NMSE value was 1.37%. Comparison between (A) and (B) and the associated NMSE values illustrates that, in our case, the two RITs (namely #5

and #11) were sufficient to provide a reliable model of the biological system. (C) Out-of-sample estimation, 2 RITs: a segment of real data that

belonged to RIT #15 is shown using black squares. The predicted output (gray circles) was estimated using first- and second-order kernel estimates

based on the datasets corresponding to RIT 5# and #11 datasets. Visual assessment and the NSME value of 4% illustrate the predictive power of the

kernels.
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1975; Berger et al., 1988a; Sclabassi et al., 1988). Kernels

obtained using the cross-correlation method were com-

pared with kernels obtained from the proposed method

in terms of proximity of k1 and k2 values and prediction

accuracy measured by the NMSE between the two

methods.

Fig. 15A shows the second-order kernel obtained

using the cross-correlation method (jagged line) and the

proposed method (smooth line) for the same recording.

The crosscorrelation method used all 20 RITs and 320

lags for the second-order kernel while the proposed

method used only RITs #5 and #11. Smoothing the

cross-correlation estimate with a triangular moving

average window, we obtained the result shown in Fig.

15B. The NMSE for each case (3.83% for cross-

correlation versus 3.60% for proposed method), the

Fig. 13. Estimates of the conditioned response in impulse pair stimulation for interimpulse intervals varying from 0 to 2000 ms based on previously

computed kernels and Eq. (3). The graph suggests facilitatory behavior for interimpulse intervals between 0 and 200 ms and inhibitory behavior for

interimpulse intervals between 200 and 2000 ms.

Fig. 14. Estimates of the amplitude of the population spike response to the 2nd, 3rd, 4th, 5th and 6th impulse of an impulse train stimulus for

interimpulse intervals of 50, 75 and 100 ms. The graph suggests facilitatory behavior (population spike amplitudes greater than one), an observation

consistent with results reported in the literature.
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first-order kernel (345 mV for cross-correlation vs. 353

mV for proposed method), and the correlation coeffi-

cient (0.983) confirm that both methods yield compar-

able results.

Across all recordings, NMSE using the proposed

method was 1% lower (on average) than NMSE using

the crosscorrelation. The maximum difference of k1

values between the two methods was within 10%, and

the correlation coefficient between second-order kernels

was 0.95 (S.D.9/0.036). These results involved all 20

RITs and in-sample prediction. In the case that out-of-

sample prediction and less than 20 RITs are considered,

the proposed method offers an advantage in kernel

estimation accuracy. This is illustrated in Fig. 16, where

out-of-sample prediction NMSEs are plotted versus the

number of RITs involved in estimating the kernels used

for the prediction. In particular, prediction NMSEs for

a RIT not included in the kernel estimation are shown.

The top graph reports prediction NMSEs when the

kernels are estimated with the cross-correlation method

while the bottom graph reports NMSEs when the

kernels are estimated with the proposed method. The

advantage of the proposed method is reflected not only

in the case-by-case (i.e. when 2, 4, 6, 8, 10, 12, 16 and 18

RITs were used to estimate the kernels) NMSE but also

on the average as it is reflected by the corresponding

Fig. 15. Comparison of the second-order kernels obtained through cross-correlation method and the adapted Volterra�/Wiener approach. (A)

Second-order kernels obtained using the cross-correlation method (jagged line) and the adapted Volterra�/Wiener method (smooth line) for the same

recording. (B) Smoothing the cross-correlation estimate with a triangular moving average window yielded a relatively smoother curve. Visual

comparison verifies the similarity of the second-order kernels from the two methods.
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mean NMSE values for each approach (i.e. 4.68% for

the crosscorrelation method versus 2.87% for the

proposed method). Note, that the largest difference in
NMSE between the two methods occurs when only two

RITs are used (7.51% for the crosscorrelation method

versus 2.87% for the proposed method). This is typical

because short data records have a significant effect on

the variability of the kernel estimates, when the cross-

correlation method is used.

5. Discussion

Traditionally, STP has been characterized using

paired pulse stimuli with variable interimpulse intervals

and impulse train stimuli with fixed interimpulse inter-

vals. We have generalized STP characterization in

several respects by: (1) introducing impulse sequence
stimuli of randomly varying interimpulse interval; (2)

considering the amplitudes of the corresponding popu-

lation spike response sequences; and (3) introducing

quantitative STP descriptors and a mathematical model

of STP with predictive capabilities.

The introduction of stimuli sequences of randomly

variable interimpulse intervals, combined the variability

of interimpulse intervals in paired pulse experiments
with the impulse succession feature in impulse trains.

This innovative approach considerably reduced experi-

mental time, especially when it was coupled with the

empirical optimization (shortening the length) of the

stimulus sequence. The reduction in stimulus duration

was by a factor of 10, decreasing the number of required

impulses from 4000 to 400. The consideration of the

effect of interimpulse intervals on the amplitude of the

population spikes formed an approach consistent with

the paired pulse and the impulse train methods. The

quantitative STP descriptors (kernels) presented a

comprehensive picture of excitatory and inhibitory

STP behavior depending on interimpulse intervals.

These quantitative descriptors were sufficient to capture

the behavior of the nonlinear dynamic mechanisms

underlying STP in this area of the hippocampus,

although the residual NMSE suggested that a third-

order kernel may be plausible. In addition to describing

STP nonlinear dynamics, the kernels offered predictive

capabilities when used in conjunction with the model of

Eq. (1). Such STP models help in evaluating the

accuracy of the STP descriptors via the output predic-

tion error and provide the capability of predicting

responses to arbitrary input patterns.

The characterization of STP, using the new approach

presented in this article, required significantly reduced

data collection time and employed computationally

efficient data analysis methods. These computational

methods can be readily extended to include population

spike latencies and can be adapted to the analysis of

dendritic and somatic EPSP data. We are planning to

apply this new approach to the characterization of STP

Fig. 16. Out-of-sample NMSE comparison between the proposed method and the crosscorrelation method versus the number of RITs employed for

computing the kernels. The prediction NMSE for RIT #10 (out-of-sample RIT) from recording #6 (ordinate) is plotted vs. the number of RITs

(other than RIT 10*/in-sample RITs) used to estimate the kernels used for the prediction. The top graph shows NMSEs based on kernels estimated

with the crosscorrelation method and bottom graph shows NMSEs based on the proposed method. Both graphs are showing the mean NMSE value

for each kernel estimation approach across all cases (2, 4, 6, 8, 10, 12, 14, 16 and 18 RITs) and the deviation from the mean for each case.
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in the CA1 region before and after drug delivery and use

the STP descriptors presented in this article to assess

drug effects.
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