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Abstract

A new method is presented for extracting the amplitude of excitatory post synaptic potentials (EPSPs) and spikes in real time. It includes
a low pass filter (LPF), a differentiator, a threshold function, and an intelligent integrator. It was applied to EPSP and population spike data
recorded in the Dentate Gyrus and the CA1 hippocampus in vitro. The accuracy of the extraction algorithm was evaluated via the extraction
normalized mean square error (eNMSE) and was found to be very high (eNMSE< 5%). The preservation of neuronal information was
confirmed using the Volterra–Poisson modeling approach. Volterra–Poisson kernels were computed using amplitudes extracted with both
proposed and traditional methods. The accuracy of the computed kernels and the resulting model was evaluated via the prediction normalized
mean square error (pNMSE) and was found to be very high (pNMSE< 5%). The similarity between the kernels computed when the proposed
method was used to extract the field potential amplitude and their counterparts when the traditional method was used to extract the field
potential amplitude confirms the preservation of the neuronal dynamics. The proposed method represents a new class of real time field
potential amplitude extraction algorithms with complexity that can be included in hardware implementations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Real time extraction and monitoring of the amplitude of
evoked field potentials is important in neurosurgery (Colletti
et al., 1997; Stecker et al., 1996; Zaaroor et al., 1993),
biosensor applications (Gholmieh et al., 2001; Stoppini et al.,
1997; Thiebaud et al., 1997), and the design of neural pros-
thetics (Donoghue, 2002; Pesaran et al., 2002). Current ex-
perimental methods for measuring the amplitude of evoked
potentials (e.g. excitatory post synaptic potentials (EPSPs)
and population spikes (PSs)) are based on software algo-
rithms that are difficult to implement in hardware. In this
article, we have introduced an algorithm for real time field
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potential amplitude extraction that can be incorporated in
hardware implementations. The proposed algorithm was mo-
tivated by the design of a novel cortical neuroprosthetic
(Berger et al., 2001) that requires as input the values of field
potential amplitudes in real time and generates the corre-
sponding output based on a hardware implementation of a
Volterra–Poisson model that represents the functionality im-
plemented by the neuroprosthetic device.

Classically, the amplitude of the EPSP waveform is de-
fined as the maximum positive value from the baseline
(Fig. 1A) and the amplitude of the population spike as
the distance between the minimum and the point that cor-
responds to the projection of the minimum on the line
joining the two positive peaks (Fig. 1B) (Johnston and
Daniel, 1995;Lagmoen and Andersen, 1981). Typically
the EPSP amplitude is computed using minimax-based
algorithms. Similarly, the computation of the population
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Fig. 1. (A) Classic EPSP amplitude extraction. The amplitude of the
EPSP waveform is evaluated by getting the maximum value. (B) Classic
PS amplitude extraction. The population spike amplitude is measured by
taking the distance between the negative minimum and the point that
corresponds to the projection of the minimum on the line joining the two
positive peaks.

spike amplitude involves a number of heuristics to reliably
isolate the minimum and the maxima in a typically noisy
EPSP. Although software based real time implementations
for the extraction of field potential amplitudes have been
implemented (Anderson and Collingridge, 2001), the ma-
jority of these methods can become cumbersome when it
comes to real time hardware implementation in the scale of
microseconds.

In this article, we introduce an improved new algorithm
for real time extraction of excitatory postsynaptic potential
amplitude and population spike amplitude. The proposed
algorithm is based on previously introduced methods for
spike detection (Hedwig and Knepper, 1992; Marion-Poll
and Tobin, 1991). It consists of a low pass filter (LPF), a
differentiator, a threshold function, and an intelligent in-
tegrator. It was tested using EPSPs and population spikes
recorded at the Dentate Gyrus and the CA1 hippocampus in
vitro. The amplitudes extracted with the proposed method
were compared to the amplitudes obtained through the
classical extraction method using the extraction normalized
mean square error (eNMSE). The preservation of neuronal
information was evaluated via the prediction normalized
mean square error (pNMSE) of models derived using the
Volterra–Poisson modeling approach (Courellis et al., 2000;
Gholmieh et al., 2002).

2. Materials and methods

2.1. Hippocampal slice preparation

Halothane anesthetized adult rats were decapitated. The
hippocampus was extracted and bathed in iced aCSF. Trans-
verse slices (400–500�m in thickness) were collected using
a Leika vibratome (VT 1000S) and were left for 2 h in aCSF
to recover at room temperature. During the recording phase,
slices were maintained submerged using a nylon mesh.
This protocol was approved by the Department of Animal
Resources and Institutional Animal Care at the University
of Southern California. Details on the hippocampal slice
preparation can be found inXie et al. (1992), andGholmieh
et al. (2001).

2.2. Hardware materials

The data were collected using two multielectrode setups,
each operated by a different user. The EPSP data were col-
lected using the multielectrode array (MEA) setup, and the

Fig. 2. (A) Acute rat hippocampal slice positioned on the MEA array.
(B) Acute rat hippocampal slice positioned on the MMEP array.
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PS data were collected using the multi-micro-electrode-plate
(MMEP) setup.

2.2.1. MEA setup
The MEA system (www.multichannelsystems.com, Egert

et al., 1998) consisted of a 60-electrode array, pre-amps,
and data acquisition hardware and software. The electrode
array was a custom-built multielectrode array (Han et al.,
2002), with the electrodes in a 3×20 arrangement (Fig. 2A).
The gold-based electrodes diameter was 30�m with an
inter-electrode distance of 50�m. The total gain (ampli-
fication) was 1200× with a noise level around±10�V.
Data were sampled at a frequency of 25 kHz per channel
with a resolution of 16 bits and were analyzed using MCS
software (MCRack v 1.44).

2.2.2. MMEP setup
The MMEP setup consisted of a 64-electrode array ar-

ranged into an 8×8 formation (Fig. 2B) [Gross et al., 1993;
Univ. North Texas,www.cnns.org], pre-amp, data acquisi-
tion boards, and custom-designed software. The recorded
signal was amplified in two stages (2500×). The preamp
had a gain of 250 while the data acquisition board gain was
set at 10. The noise level was around±20�V. Data were
sampled at a frequency of 7.35 kHz per channel with a res-
olution of 16 bits. The software for data recording, prepro-
cessing, and analysis was based on custom written Matlab
procedures (Gholmieh et al., 2001).

2.3. Data collection

Random impulse trains (RITs) consisting of 400 fixed am-
plitude impulses with Poisson distributed (mean frequency
of 2 Hz) interimpulse intervals were used to stimulate the
afferent fibers. The medial Perforant Path (Dentate Gyrus
afferents) was stimulated in the range of [50–100�A] using
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Fig. 3. The amplitude extraction algorithm. The data were processed in series using a low pass filter, a differentiator, a threshold function, and an
integrator. (A) EPSP extraction algorithm. (B) PS extraction algorithm.

an adjacent pair of electrodes (biphasic current) and the cor-
responding EPSP waveforms were recorded from the gran-
ular cell layer using the MEA setup. Data were recorded
from the channel that had the highest EPSP amplitude, cor-
responding to an electrode located over the cell body layer
of the granule cells.

The Schaffer Collaterals (CA1 afferents) were stimulated
in the range of [200–400�A] using an external bipolar elec-
trode of twisted Nichrome wires (biphasic current) and the
corresponding PS waveforms were recorded from the pyra-
midal cell layer using the MMEP setup. The population spike
data were recorded from the channel that had the highest
population spike amplitude and the corresponding electrode
of which was located over the cell body layer.

2.4. Analytical methods

EPSP and PS amplitudes were extracted with the pro-
posed method and the classical method. The differences
were evaluated by computing the extraction normalized
mean square error between corresponding datasets pro-
cessed with the classical method and the proposed method.
The preservation of neuronal information was evaluated
using the Volterra–Poisson modeling approach. We com-
pared kernels computed with output datasets extracted us-
ing the classical method with their counterparts computed
with output datasets extracted using the proposed method.
The quality of prediction and accuracy of the kernels was
evaluated using the prediction NMSE (pNMSE).

2.4.1. Classical amplitude extraction
The EPSP amplitude was computed as the maximum

value in the recorded waveform (Fig. 1A). The PS ampli-
tude was measured by finding first the coordinates of the
first upward-going (positive) peak, the second upward-going
peak, and the in between downward-going (negative) peak

http://www.multichannelsystems.com
http://www.cnns.org
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(Fig. 1B). Then, the spike amplitude was computed as the
length of the vertical line drawn from the negative peak to
the line joining the two positive peaks (Johnston and Wu,
1995; Lagmoen and Andersen, 1981).

2.4.2. Real time EPSP and PS amplitude extraction
The amplitude extraction mechanism was comprised of

a low pass filter, a differentiator, a threshold function, and
an intelligent integrator (Fig. 3). The low pass filter attenu-
ated the high frequency noise so as not to be amplified by
the differentiator. The selection of the cutoff frequency was
based on using the EPSP and PS power spectrum to iden-
tify the frequency range of the desirable signal. Ifx(n) is the
digitized input to the LPF filter andr(n) is its output, then:

r(n) =
M−1∑
m=0

h(m) × (n − m) (1)

whereh(m) is the impulse response of the filter. In our case,
we used a FIR filter of orderM with h(m) = cm the filter co-
efficients. The coefficients of the FIR filter can be computed
using a variety of techniques available in several commercial
signal processing packages. Although a digital FIR filter has
been used in this study, an analog filter could also be used
at the signal conditioning stage before A/D conversion.

A simple differentiator followed the LPF and was used
to accentuate rapid varying waveforms in relation to slower
varying waveforms. This was particularly useful in the case
of a rapid varying spike present in a slower varying EPSP.
The operation of the differentiator we used is described by
the following equation:

s(n) = r(n) − r(n − 1), n > 0 (2)

The outputs(n) of the differentiator was then fed into a
thresholding nonlinearity. The output of the threshold device
for the PS and EPSP was:

Ve(n) =
{

0, s(n) < θp

s(n), s(n) > θp
(3)

and

Vs(n) =




s(n), θp < s(n)

0, θn < s(n) < θp

−s(n), s(n) < θn

(4)

whereVe is the device output for EPSPs andVs is the device
output for PSs. The threshold valuesθp and θn were real
numbers (θn < θp) and were chosen to form a band for re-
jecting weak slow activity and the remaining baseline noise.
In the EPSP case, the value ofθp was set higher than the
baseline noise level. In the population spike case, the value
of θn andθp were first set higher than any slow activity or
noise. Then, the value ofθn was increased in order to avoid
integrating the repolarization phase of the population spike
waveform (Fig. 6H).

The intelligent integrator received the output of the thresh-
old device and integrated over a predefined interval that can

be preset or determined dynamically. It was comprised of
two functions: the integration function and the decision func-
tion. The integration function integrated the incoming signal
over a predefined interval. The decision function decided
whether the value of the integration function corresponded
to a real field potential amplitude or it was the result of an
erroneous extraction triggered by noise. If the value of inte-
gration did not correspond to a real field potential, it was not
let through. The decision function can be viewed as quality
control and can involve a number of heuristics. In its sim-
plest form, the decision function could be integration over a
predefined interval P after a trigger (typicallyθn for the PS
andθp for the EPSP), expressed as:

y(n) = γ

P−1∑
p=0

Vt(t), t = e, s (5)

where� is a scaling factor computed by averaging the ratio
of the amplitude obtained through and the classical method
to the amplitude obtained through the proposed method.P
is the length of the integration domain.

In this article, in addition to defining an integration do-
main, we enriched the decision function with a set of heuris-
tics on the duration of the positive and negative phase of the
output of the thresholding nonlinearity and the transition in-
terval from the negative phase to the positive phase. In par-
ticular, the output of the intelligent integrator was defined
as:

ye(n) =
{

γ
∑P−1

p=0Ve(e), if wp > ωp

0, otherwise
(6a)

for EPSP amplitude extraction and

ys(n) =




γ
∑P−1

p=0Vs(p), if wn > ωn and wp > ωp

and wtr > ωtr

0, otherwise

(6b)

for spike amplitude extraction, wherewn is the duration of
continuous negative activity belowθn, wp is the duration of
continuous positive activity aboveθp, andwtr is the duration
of transition region at the output of the threshold device.ωn,
ωp, andωtr were positive real numbers (Fig. 4) that were
determined experimentally.

This proposed decision function provided the advantage
of rejecting undesirable artifacts at the frequency and ampli-
tude range of the EPSP or the spike. In the EPSP case, the
output of the intelligent integrator corresponded to the peak
EPSP amplitude, while in the spike case, the output of the
intelligent integrator corresponded to the average of the dis-
tance between the negative peak and the first positive peak
and the distance between the negative peak and the second
positive peak.



G. Gholmieh et al. / Journal of Neuroscience Methods 136 (2004) 111–121 115

Fig. 4. (A) EPSP waveform. (B) Population spike waveform.y-axis:
amplitude in microvolts;x-axis: time in ms. (C) First order derivative of
the EPSP waveform shown in panel. (D) First order derivative of the EPSP
waveform shown in panel B.y-axis: amplitude in�V/�t ; x-axis: time in
ms; wn is the duration of continuous negative activity;wp is the duration
of continuous positive activity;wtr is the duration of transition region.

The accuracy of the amplitude extraction was evaluated
using the extraction normalized mean square error of the
amplitude, defined as follows:

eNMSE=
∑

i (ypropi
− yclassicali )

2∑
i y

2
classicali

(7)

whereyprop is the extracted amplitude of the EPSP or PS us-
ing the proposed method,yclassicalis the amplitude extracted
using the classical method.

2.4.3. Nonlinear dynamics evaluation
The effect of the extraction method on the nonlinear dy-

namic mapping between the input and the output datasets
was assessed using the Volterra–Poisson modeling approach
(Courellis et al., 2000; Gholmieh et al., 2002). A second
order model was used expressed by the following equation:

y(ni) = k1 +
∑

ni−µ<nj<ni

k2(ni − nj) (8)

whereni is the time of occurrence of theith stimulus im-
pulse,nj the time of occurrence of thejth stimulus impulse
prior to theith stimulus impulse,y(ni) the amplitude of the
waveform response to theith stimulus impulse,µ the mem-
ory of the biological system,k1 the first order kernel, and
k2 is the second order kernel. The first order kernel repre-
sents the mean of the waveform amplitude of interest while

the second order kernel quantifies the effect on the current
waveform amplitude of the interaction between the current
stimulus impulse and each past stimulus impulse within the
memory windowµ. The first and second order kernels were
calculated using output datasets extracted with the classical
(yclassical) and the proposed (yprop) method. The accuracy of
the computed kernels was evaluated using the normalized
mean square error of the predicted amplitude (pNMSE), de-
fined as follows:

pNMSE=
∑

i (Ypri − Ydatai )
2∑

i Y
2
datai

(9)

whereYpr is the predicted amplitude of the waveform using
the computed kernels andYdata is the amplitude extracted
from the recorded data using either the classical method
or the proposed method. The NMSE is a measure of how
well kernels can capture the system nonlinear dynamics. If
the NMSE value is small, the kernels model the biological
system very well.

3. Results

Two sets of experiments were conducted, each consisting
of five experiments. The first set of experiments included
EPSP data collected from the Dentate Gyrus in vitro and
the second set of experiments included PS data recorded
at the CA1 area in vitro. The EPSP and PS amplitudes
were extracted using both the classical method and the pro-
posed algorithm. The amplitudes extracted with the pro-
posed method were compared to those obtained by classical
method using the extraction normalized mean square error.
The preservation of neuronal dynamics was evaluated using
the Volterra–Poisson modeling approach. We compared ker-
nels computed with output datasets extracted using the clas-
sical method with their counterparts computed with output
datasets extracted using the proposed method.

The first step in extracting the EPSP or PS amplitude was
low pass filtering. Our implementation of the low pass filter
was an FIR filter whose cut-off frequency was determined
by the Power spectrum of the EPSP (Fig. 5A) and PS wave-
form (Fig. 5B). The power spectrum of EPSP data showed a
peak between 20 and 40 Hz. The power spectrum of PS data
showed three peaks: an early peak between 0 and 10 Hz, a
second peak corresponding to the EPSP component between
20 and 40 Hz, and a late peak corresponding to the spike
component between 50 and 100 Hz. The values of the power
spectrum values became negligible (decreased to less than
0.01) above 300 Hz for the EPSPs and above 400 Hz for the
PSs. These frequencies were chosen as the cut-off frequen-
cies for two 30th order FIR filters with 60db attenuation at
the cut-off frequency.

Low pass filtering was essential for the amplitude extrac-
tion mechanisms.Fig. 6 shows the result of the differenti-
ation of a filtered and unfiltered signal.Fig. 6A shows an
unfiltered EPSP waveform andFig. 6Cshows the result of
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Fig. 5. (A) Power spectrum of EPSP computed from three different experiments. (B) Power spectrum of population spike amplitude also computed from
three different experiments.

its differentiation.Fig. 6B shows a filtered EPSP waveform
andFig. 6D shows the result of its differentiation. Compar-
ison betweenFig. 6CandFig. 6D clearly shows the effect
of the unfiltered noise on the differentiated signal and il-
lustrates the importance of low pass filtering prior to differ-
entiation.Fig. 6Gshows the result of the differentiation of
an unfiltered PS (Fig. 6E) while Fig. 6H shows the results
of the differentiation of a filtered PS (Fig. 6F). Comparison

betweenFig. 6G and Fig. 6H confirms the importance of
low pass filtering in the case of PS as well.

After low pass filtering, the signal was processed by the
simple differentiator and the output of the differentiator was
fed into a threshold device. The threshold values were se-
lected to form a band for rejecting weak slow activity and
the remaining baseline noise. The value ofθp in the EPSP
case was set at 12.5�V/ms and the threshold values for the
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Fig. 6. The resulting differentiation of the filtered and non-filtered signal. (A) Non-filtered EPSP signal. (B) Filtered EPSP signal. (C) The result ofthe
differentiation of the non-filtered EPSP signal. (D) The result of the differentiation of the filtered EPSP signal. (E) Non-filtered PS signal. (F) Filtered
PS signal. (G) The result of the differentiation of the non-filtered PS signal. (H) The result of the differentiation of the filtered PS signal. It can be
readily seen that the low pass filter is necessary in order to remove the high frequency noise that can be amplified during the differentiation phase.

PS case were set at+14.52�V/ms for θp and−48.4�V/ms
for θn. These threshold values successfully distinguished the
waveforms of interest from slow and noisy baseline activity.
The application of the chosen threshold values to all EPSPs
and PS in each RIT, across all RITs, defined a range of pos-
itive, negative, and transition duration intervals. Statistics of
these intervals are shown onTable 1.

The output of the threshold function was integrated and
the result was released by the decision function, if the set of

positive and negative activity and transition duration criteria
(wn > ωn, wp > ωp, andwtr > ωtr) is met. The values for
ωn, ωp, andωtr (Table 1) were chosen at 99% confidence
bound using a right tail probability.

Finally, the scaling factorγ was calculated by averaging
the ratio of the amplitude obtained through the classical
method to the amplitude obtained through the proposed
method. In the EPSP case,γ was found to be 1.001
(S.D.±0.002) while in the PS case,γ was found to be equal
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Table 1
Average positive (wp), negative (wn), and transition (wtr ) duration for EPSPs and PSs, after applying the selected threshold values

wp (EPSP) (ms) wp (PS) (ms) wn (PS) (ms) wtr (PS) (ms)

RIT #1 3.89 (±0.40) 4.42 (±1.18) 3.37 (±1.25) 0.49 (±0.08)
RIT #2 3.84 (±0.41) 6.12 (±1.77) 4.71 (±2.29) 0.75 (±0.04)
RIT #3 3.18 (±0.34) 4.94 (±1.04) 3.49 (±1.0) 0.69 (±0.17)
RIT #4 2.85 (±0.29) 5.12 (±1.60) 3.69 (±1.58) 0.83 (±0.33)
RIT #5 3.46 (±0.33) 5.88 (±1.75) 3.33 (±1.61) 0.52 (±0.27)
Average 3.44 (±0.44) 5.29 (±0.70) 3.71 (±0.57) 0.66 (±0.14)
Threshold values ωp = 1.79 ωp = 2.67 ωn = 1.57 ωtr = 0.14

The last row shows the interval threshold values for the decision function included in the intelligent integrator.

to 0.050 (S.D. ± 0.003). P is the length of the integration
domain and it was set to 20 ms for both EPSP and PS.

Comparison between the amplitudes extracted by the clas-
sical and the proposed method provided an average eNMSE
of 0.94% (S.D.±0.28%) for EPSPs and 2.48% (S.D.±1.73)
for PSs. The small eNMSE values (<5%) suggested that
for both EPSPs and PSs, the classical amplitude extrac-
tion method and the proposed amplitude extraction method
yielded comparable results. The nonlinear dynamics were
also preserved. In the case of EPSP, the first order kernel

Fig. 7. (A) Second order kernels estimated from an EPSP classical dataset (gray curve) and an EPSP processed dataset (black curve). (B) Sample of
EPSP amplitude extracted using the classic (gray circles) and the proposed method (black squares).

was overestimated by an average of 2.61% (S.D. ± 2.45%),
while in the case of the PS it was overestimated by an av-
erage of 6.65% (S.D. ± 5.16%).Fig. 7A shows a represen-
tative second order kernel computed with the output dataset
extracted with the classical method (gray) and the proposed
method (black) in the case of EPSP.Fig. 8A shows a rep-
resentative second order kernel computed with the output
dataset extracted with the classical method (gray) and the
proposed method (black) in the case of PS. In both cases,
the second order kernels are very close in shape and size.
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Fig. 8. (A) Second order kernels estimated from a PS classic dataset
(gray curve) and a PS processed dataset (black curve). (B) Sample of
population spike amplitude extracted using the classic (gray circles) and
the proposed method (black squares).

A segment of an EPSP amplitude dataset extracted with
the classical method (black) is compared to its counter-
part extracted with the proposed method (gray) is shown
in Fig. 7B. A segment of a PS amplitude dataset extracted
with the classic method (black) is compared to its counter-
part extracted with the proposed method (gray) is shown
in Fig. 8B. In both figures, corresponding amplitudes ex-
tracted with the classical method (gray circles) and the pro-
posed method (black squares) practically coincide. Similar
conclusions were reached after evaluating the average pre-
diction NMSE. In the case of EPSP, the average prediction
NMSE (pNMSE) was 0.70% (S.D. ± 0.5%) when the clas-
sical amplitude extraction method was employed and 0.85%
(S.D.±0.4%) when the proposed extraction method was em-
ployed. In the case of PS, the prediction NMSE (pNMSE)
was 2.42% (S.D.±1.32%) when the classical amplitude ex-
traction method was employed and 3.09% (S.D. ± 0.92%)
when the proposed method was employed. The small pN-
MSE (<5%) values suggest high kernel and model accu-
racy. Table 2and Table 3summarize the results obtained
from analyzing all five EPSP and the PS datasets respec-
tively. Each row tabulates the results for each experiment.
The last row shows the column averages. The columns of the
tables include the values of eNMSE,k1, and pNMSE used to
compare extraction accuracy and preservation of nonlinear
dynamics.

Table 2
Comparison between the classical and the proposed EPSP amplitude
extraction method

Extraction
method

eNMSE (%) k1 (�V) pNMSE (%)

RIT #1 Classic 0.67 294 1.10
Proposed 294 1.18

RIT #2 Classic 0.74 390 1.44
Proposed 405 1.30

RIT #3 Classic 0.80 165 0.44
Proposed 162 0.44

RIT #4 Classic 1.17 212 0.18
Proposed 208 0.51

RIT #5 Classic 1.3 105 0.33
Proposed 97 0.83

Average Classic 0.94 (±0.28) 232 (±111) 0.70 (±0.50)
Proposed 233 (±119) 0.85 (±0.40)

In both cases, the small eNMSE values suggest that the
proposed method extracts amplitude values almost identical
to the classical method. The small pNMSE values and the
small difference in pNMSE values between the two ampli-
tude extraction methods, the small difference between the
values of the first order kernels, and the close resemblance
of the second order kernels, imply that the STP nonlinear
dynamics were preserved regardless of whether the am-
plitude of the response field potential was extracted with
the classical method or the proposed method. Therefore,
the proposed method implements real time field potential
amplitude extraction comparable to the amplitude extracted
with the classical method preserving the system’s nonlinear
dynamic properties.

Finally, we examined the sensitivity of the proposed
method to variations of the threshold values (θp andθn) in
terms of the resulting eNMSE and pNMSE.Fig. 9A shows
the plot of eNMSE versus increasing threshold values

Table 3
Comparison between the classical and the proposed PS amplitude extrac-
tion method

Extraction
method

eNMSE (%) k1 (�V) pNMSE (%)

RIT#1 Classic 2.7 912 1.04
Proposed 936 2.86

RIT#2 Classic 6 663 2.72
Proposed 731 4.45

RIT#3 Classic 1.27 545 1.82
Proposed 555 1.93

RIT#4 Classic 1.81 586 4.54
Proposed 611 3.39

RIT#5 Classic 4.14 645 2.02
Proposed 737 2.86

Average Classic 2.48 (±1.73) 670 (±143) 2.42 (±1.32)
Proposed 714 (±146) 3.09 (±0.92)
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Fig. 9. Sensitivity analysis. (A) Plot of eNMSE vs. threshold level. (B)
Plot of pNMSE vs. threshold level.

expressed as multiples of the selected threshold values. The
pNMSE values were confined to the range of (3–5%) when
the threshold value was less than four times the selected
threshold values.Fig. 9B shows the plot of the pNMSE
versus increasing threshold values expressed as multiples
of the selected threshold values. The range of the pNMSE
values increased from 3 to 4% to more than 6% as the
threshold increased past four times the baseline value.

4. Discussion

New designs for biomedical devices such as portable med-
ical equipment, biosensors, and neural prosthetics require
new computational methods that can be integrated in hard-
ware to extract in real time features of interest from inbound
signals. To address this need in a new generation of SoC
(System-on-a-Chip) based neuroprosthetic devices [Berger
et al., 2001], we designed a new algorithm to extract the
amplitude of neural field potentials, in particular, EPSP am-
plitudes and spike amplitudes. The proposed algorithm in-
cluded a low pass filter, a differentiator, a threshold device,
and an intelligent integrator. The low pass filter reduced the
high frequency noise. The differentiator dissected the wave-
form into positive and negative domains. The threshold de-
vice clipped the undesirable part of the differentiated signal.
The intelligent integrator computed the amplitude of valid
EPSP or PS waveforms, qualified by the decision function.
The proposed algorithm was implemented by tuning several

parameters. The cutoff frequency selection for the LPF was
based on the EPSP and PS power spectra. The adjustment
of the threshold values (θp, θn) was based on the level of
undesirable slow activity and residual noise. The decision
function parameters (ωn, ωp, andωtr) were determined ex-
perimentally from five different experiments in each case.

The validation of the proposed algorithm with EPSP and
population spike datasets recorded at the Dentate Gyrus and
the CA1 hippocampus in vitro was successful. The accu-
racy of the amplitude extraction using the proposed method
was very high as it was reflected in the extraction normal-
ized mean square error (in the range of 2–4% for PSs and
0.6–1.3% for EPSPs). The STP nonlinear dynamics were
also preserved as shown by the small difference between the
value of the first order kernel computed using output am-
plitudes extracted with the classical method and the value
of the first order kernel computed using output amplitudes
extracted with the proposed method (Tables 2 and 3), and
by the close resemblance of the second order kernels shown
in Figs. 7A and 8A. The preservation of the STP nonlinear
dynamics was also confirmed by the small pNMSE values
(Tables 2 and 3).

The difference between the EPSP and the spike amplitude
extraction was the choice of the threshold function and the
parameters of the intelligent integrator. In the EPSP case,
the output of the integrator corresponded to the peak EPSP
amplitude. In the spike case, the output of the integrator cor-
responded to the average of the distance between the min-
imum and the first maximum in the population spike and
the distance between the second peak and the minimum of
the population spike. The implementation of this algorithm
with electronics is focused on the use of field-programmable
gate arrays (FPGAs). Implementation of the decision func-
tion with analog electronics could present several challenges,
but FPGA implementations are much more accommodating
with complex, real time logic.

Although the proposed field potential amplitude extrac-
tion method was validated with EPSP and PS waveforms
from the hippocampus, it is readily applicable to other types
of evoked potentials such as sensorimotor evoked potentials,
auditory evoked potentials, visual evoked potentials, and var-
ious forms of spike activity, by using the following steps as
a guideline: (1) record a few field potential responses, (2)
use the power spectra to determine the cutoff frequency for
the LPF, (3) determine the thresholds (θp andθn) from the
differentiated signal, (4) compute positive phase, negative
phase and transition interval thresholds (ωn, ωp, andωtr), (5)
evaluate extraction accuracy via eNMSE and preservation
of the system’s nonlinear dynamic properties via, pNMSE
and the computed kernels.
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