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Abstract—This paper proposes the use of a class of feedforward ~ Specifically, the study of high-order nonlinear physiological
artificial neural networks with polynomial activation functions  systems using discrete-time Volterra models (DVM'’s) is im-

(distinct for each hidden unit) for practical modeling of high- ; PR ; ; ; P
order Volterra systems. Discrete-time Volterra models (DVM'’s) peded by computational limitations in estimating high-order

are often used in the study of nonlinear physical and physiological K€rnels. This problem may be mitigated by training equivalent
systems using stimulus-response data. However, their practical TLP models with the available experimental data and seeking

use has been hindered by computational limitations that confine indirect estimation of high-order Volterra models via TLP
them to low-order nonlinearities (i.e., only estimation of low-order \yith polynomial activation functions. Note that the latter are

kernels is practically feasible). Since three-layer perceptrons . _.. . P . .
(TLP's) can be used to represent input—output nonlinear map- distinct for each hidden unit (i.e., have different coefficients),

pings of arbitrary order, this paper explores the basic relations thus not corltradic.ting_ previous resuIFs on the necessity of
between DVM and TLP with tapped-delay inputs in the context nonpolynomial activation functions with fixed form across
of nonlinear system modeling. A variant of TLP with polyno-  all hidden units [2], [19]. On the other hand, applications of
mial activation functions—termed "separable Volterra networks” 11 p can penefit from methodological guidance in selecting the
(SVN’s)—is found particularly useful in deriving explicit relations - K hi h b f
with DVM and in obtaining practicable models of highly nonlin- a_pproprlat_e network arc l_tgcture (eg.t _e.num er O_I’ type o
ear systems from stimulus-response data. The conditions under hidden units—a matter critical for determining the efficacy of
which the two approaches yield equivalent representations of the the training process and the predictive ability of the model) and
input-output relation are explored, and the feasibility of DVM  from enhancements in scientific interpretation of the obtained

estimation via equivalent SVN training using backpropagation oq 1ts hased on equivalent DVM estimated from the same
is demonstrated by computer-simulated examples and compared

with results from the Laguerre expansion technique (LET). The data. _ . .
use of SVN models allows practicable modeling of high-order ~ The relationship between Volterra models (Volterra series)

nonlinear systems, thus removing the main practical limitaton and feedforward multilayer neural networks has been pre-
of the DVM approach. viously examined in a rudimentary fashion [6], [12], and

Index Terms—Laguerre kernel expansion, nonlinear system methods have been suggested for the indirect estimation of
modeling, polynomial activation functions, separable Volterra \plterra kernels if an equivalent TLP with sigmoidal or
glitwork, three-layer perceptrons, Volterra kernels, Volterramod-  4\vnomial activation functions can be successfully trained
’ [24], [38]. Chen and Manry have employed “polynomial basis

I. INTRODUCTION functions” to model multilayer perceptrons and suggested

HE Vol h i dell hthat the resulting neural network is “isomorphic to conven-
olterra approach to nonlinear system modeling gy, polynomial discriminant classifiers or \olterra filters”

b_een used extensively in studies of physiological (6_‘ ]. Specht has examined a polynomial adaline architecture
especially neural) systems _f(_)r the last 25 years, fOIIOW'_ r classification tasks [35]. Sandberg has given a general
tsr:;b;lcjitson?;:y Ztt:'lael ?; ?:C't'liead;?ncezi anglfot?]feougt?]'rr\gathematical proof of a relevant aproximation theorem [33].

(for parti VIew, [211-[24]). el5olyn0mial perceptron architectures have been explored in

hand, feedforward artificial neural networks, and three—lay&r - L
N . . e problem of communication channel equalization [3] and
perceptrons (TLP’s) in particular, have emerged in recent years

. . ; ; c?channel interference suppression [39], where the polynomial
as a promising approach to nonlinear mapping/modeling 0 . : . .

. . erceptron is defined as employing a full \Volterra series
Input-output data (see, for instance, [13], [18], [31], and [3212-)( ression in cascade with a sigmoidal activation function—an
The rising interest in applications of these two approaches P 9

0
nonlinear system modeling motivates this comparative stu

fgchitecture far less parsimonious than using polynomial ac-
that seeks possible cross-enhancements from their combi ugtion functions in a TLP (distinct for each hidden unit),
use.

as suggested in this paper. Volterra approximations of per-
ceptrons for nonlinear noise filtering and beamforming have
A ManugcrilpggrYeC_er:ir:{ed Aulgust 20, 1996;dretz)vis(e3d Deggmgleé(slloy 19%6 daaﬁso been explored empirically [15]. Of particular theoretical
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Fig. 1. Schematic diagram of the single-output three-layer perceptron (TLP) where the input vector represghfs+hB-point input epoch at each
discrete-timen. The jth hidden unit performs a sigmoidal transformatiSp(-) on the weighted sum of the input values with an off¢et The output unit
may perform a sigmoidal or linear transformatiéi(-) on the weighted sum of the outputs of the hidden units.

This paper examines the fundamental relations betweenconform with the formalism of the Volterra expansion of a
DVM and TLP with tapped-delay input, and focuses on thegingle-output system.
cooperative use for practical modeling of nonlinear dynamic Each hidden unit of the TLP performs a nonlinear trans-
systems from stimulus-response sampled data. Both mofteimation of a weighted sum of the respective inputs for
types are shown to be able to represent nonlinear input—outpathn, using the “activation function’S(-). A sigmoidal or
mappings (systems), thus according them equal distinction“aguashing” function is traditionally used for this purpose.
“universal approximators.” Of particular interest is the use d¢dowever, other functions can be used as well (e.g., poly-
distinct polynomial activation functions in the hidden unitjomial, sinusoidal, Gaussian etc., or combinations thereof)
of TLP architectures that achieve modeling efficiencies amgpending on the objectives of a particular application. Thus,
facilitate comparisons with DVM. Sections Il and Il reviewthe output of thejth hidden unit(j = 1,---, K) for eachn is
the basics of the TLP and DVM approaches, respectively.
Section IV compares the two approaches, introduces the “sep- Zjn = Sj(ujn) (1)
arable Volterra networks” and discusses their equivalenggere
conditions. Section V examines the relative efficacy of these o
approaches in modeling Volterra systems through computer P Z Wi L )
simulated examples, where the Laguerre expansion technique s S
(LET) is employed for DVM kernel estimation [26].

m=0

Clearly, for a tapped-delay networlk, ., is the convolution

of the input signal with a finite impulse respon$e; ., }.

If a sigmoidal activation function is used, then another free
The basic class of single-output TLP depicted in Fig. 1, inparameterg;, is introduced as the characteristic “threshold”

plements a nonlinear mapping of the input epoch, representadoffset” of the jth unit. For instance, the “logistic” function

by the vectorzl = [z, 0xp 12, m], ON the output scalar 1

yn at each timen. Since this study is concerned with input Si(ujn) = 1 ey 7 (3)

data that are ordered in discrete time sequence, we consider +exp[=A(ujn — 0;)]

a tapped-delay input, whets, ,,, = z(n — m) for each time is a commonly used sigmoidal activation function. Note that,

index n. The case of a single output is considered in ordér addition to the offse®;, the exponent contains another

Il. THREELAYER PERCEPTRON WITHSINGLE OUTPUT
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parameter\, which is however fixed—i.e., it is not estimated The DVM can be viewed as a multivariate power series
from the data but is specified by the user. The parametenultinomial, if of finite order) expansion of a nonlinear
A determines the transition slope from level 0 to level Tunction
and may affect the stability and convergence of the back-
propagation training algorithm. A& increases the sigmoidal
transformation tends to a “hard threshold.” Various othavhere the argument of'(-) corresponds to the input epoch
sigmoidal functions have been used (etgnh, arctan etc.) values at each time, i.e.,z,, ,,, = x(n—m). Theith functional
in the TLP literature. term of (6) is ani-tuple convolution involving; time-shifted
For the output unit, we have versions of the input epoch over the interyaln — M] and
the ith-order kernelk;. This hierarchical structure defines a
K canonical representation of stable nonlinear causal systems
Yn = So ZTJZJ?" : (4)  (mapping operators), where thth term represents théth-
=1 order nonlinearities. Causality implies that future input values
In order to simplify the comparison between this TLlo not affect the p_r_esent value of the output. Stability implies
network and the DVM that seeks to perform the same igbsolute summability of the Volterra kernels and convergence

put—output mapping, we will consider the case of a lineQf the corresponding series of uniform bounds [22].
output unit In this formulation, the class of linear systems is represented

simply by the first-order term (the first-order kernel is the
K familiar “impulse response function”) and the nonlinear system
Yn = Z TjZ5me (5) dynamics are explicitly represented by the corresponding high-
i=1 order kernels. The degree of system nonlinearity determines
Note that many other classes of feedforward neural networlk§ "equired number of kernels for a model of adequate
have been explored in the literature (e.g., having multiple higredictive capability, subject to practical computational con-
den layers, nonsigmoidal activation functions, nondetermini@derations. o _
tic weights, bilinear weighted sums, units with intrinsic dy- NS modeling approach has been used extensively in studies
namics, etc.). It is critical to note that the use of nonsigmoid8f Physiological systems (especially neural systems) over the
activation functions may offer significant methodological adast 25 years. Following Wiener's pioneering ideas, its use
vantages and yield modeling efficiencies (as elaborated S Peen combined with approximate white-noise stimuli (e.g.,
Sections IV and V). band-limited white-noise, binary, and ternary pseudorandom
In addition to feedforward neural networks, architecture¥9nals, etc.) in order to secure exhaustive testing of the system
with lateral connections between same-layer units or feeqfd facilitate the estimation of high-order kernels [37].
back connections between different layers (recurrent networksjEXtensive studies have explored the limits of applicability
have been explored in the neural network literature and t8d efficient implementation of this approach, leading to
suitable for certain applications. However, they result in fatccessful applications to low-order nonlinear systems (up
more complicated relations with the DVM that impede luci@® third order). This modeling approach has been extended
comparisons. Hence, the scope of this study is limited to an &%- the cases of mult|pl_e Inputs and multlple outputs (_|n-
plicit comparison between this relatively simple class of TLEUding spatiotemporal inputs in the visual system), point-
networks and the DVM, since they represent two fundamenf{°c€Ss inputs/outputs (suitable for neuronal systems receiv-

and general model forms for nonlinear input-output mappin§i/generating action potentials) and time-varying systems
of time-series data. often encountered in physiology. The main limitations of this

approach are the practical inability to extend kernel estimation
to orders higher than third (due to increasing dimensionality
of kernel representation) and the strict input requirements (i.e.,
The DVM is valid for all continuous, causal, nonlinearapproximate white noise) for unbiased kernel estimation when

y(n) = F(xn,ov Ln,ly" " xn,]\l) (7)

Ill. DISCRETETIME VOLTERRA MODELS

time-invariant systems/mappings with finite memaddy truncated models are obtained. These limitations provide the
o motivation for seeking the cooperative use of TLP models.
y(n) = Z Z ki(ma, - - mi)a(n — m1) If we consider an expansion of the Volterra kernels on a

complete basigb,(m)} of L basis functions defined over the
©6) system memory0, M], then the DVM of (6) becomes

u(n) = o+ Y ea(es(n)

1 Mmy,ee,m; =0

ceex(n —my)

where z(n) denotes the input data sequence aiid) the

J
output data sequence. The kernel functiofis} describe o
the nonlinear dynamics of the system (i.e., fully characterize + ZZCQ(%J?)% (nJvp(n) +--- (8)
the nonlinear input—output mapping) and they are symmetric I

(i.e., invariant to any permutation of their arguments). Thahere

input—output relation described by the DVM of (6) is func- M

tionally equivalent to the mapping effected by the TLP of vi(n) = Z bi(m)xz(n —m) 9)
Flg 1. m=0
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Fig. 2. Schematic diagram of themodified Volterra model (MVM) defined by (9) and (12). The middle-layer {ilhjts form a linear filter-bank
thatspans the system dynamics and generates the sifingla)}. The latter are the inputs of the multivariate nonlinear functjqn) that represents
the nonlinearities of the Volterra model.

andcy, ¢, - - - are the kernel expansion coefficierits = &,). which is equivalent to the expression of (8). The expression

For instance, of (8) can be viewed as a multivariate (Taylor) expansion
L of an analytic nonlinear functiorf(-) or as a multinomial
ke (m) :ch(j)bj(m) (10) approximation of a nonanalytic functiorf(-), termed the

et modified Volterra model (MVM).
L L The MVM corresponds to the functional diagram (network)
ka(my, ma) = c2(j1, 42 )by, (my)by, (m 11) of Fig. 2, where the middle-layer unit§B;} form a linear
2m, m2) ];g::l 21,320 (b, (m2) - (L) filter-bank with impulse response functiof;(m)} perform-
ing discrete-time convolutions with the input data, as indicated
are the expansions for the first- and second-order ker”Skﬁ(Q).This filter-bank may be formed by an arbitrary (general)
satisfying the weak condition of square summability ov&fet of pasis functions or it may be “customized” for the
[0, M]. These expansions are extended to all kernels presgitiicular dynamic characteristics of a given system (mapping)
in the system. to achieve compactness and computational efficiency (possibly

Note that the variabley;(n) is a weighted sum of the using an adaptive approximation process). This customized

mpgt epoch values ("9" .d|scre_te convolution), akin to tn?asis can be constructed from estimates obtained from a
variable u, , of (2). This is an important common feature

of the two canonical representations (TLP and DVM). It igsgﬁ ri;ﬁi‘j (ﬁé%qugnﬁggg:t? Se:c:o;g::sﬂaiyzferzsg Oer:f
critical to note that, the numbek of basis functions{b,} y prop 9

required for adequate approximation of the kernels can ggcomposition _Of an estimated seico.nd.-order Voltgrra mode”I o
made much smaller thad/ by choosing the proper basisSGIect the fgnctlon$bj(m)} as the “principal dyqam|c mofjes
{b;} in a given application. This leads to more compa fthe nonlinear system [27], [28]. Th_e_pursun pf parsimony
models due to reduction of the dimensionality of {Ag +1)- motivates the search for the most efficient bagis}, which

dimensional function#(-) in (7), yielding the L-dimensional Ma&Y or may not be orthogonal. . .
output function This type of decomposition of a nonlinear system was first

proposed (in continuous time) by Wiener in connection with
y= flvy,v2,--,vL) (12) a complete orthonormal basig;} and a Gaussian white
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noise input [37]. In Wiener's formulation, the variablés;} analytic activation function [38]. Likewise, a finite polynomial
become independent Gaussian processes and the nonlineapfroximation can be obtained for any continuous activation
f(-) is further expanded on a Hermite orthonormal basis féunction. Thus, (16) can be used to evaluate the Volterra
the purpose of nonlinear system identification. The Wienkernels of a TLP model of a system. We will return to this
formulation may not be a practical or desirable option in i@sue in the following section.
given application; nonetheless, it represents a powerful condn searching for the equivalence conditions between TLP
ceptual framework for nonlinear modeling, demonstrating trend MVM, we note that in both cases “hidden” variables are
ability of white-noise inputs to extract sufficient informatiorused (i.e.z andw, respectively) that are formed by linear com-
from the system for constructing nonlinear models. Conskinations (convolutions) of the input vector values according
guently, white-noise stimuli (whenever available) constitute an (2) and (9), respectively. Thus, the role of the filter-bank in
effective ensemble of inputs for system modeling or netwoikg. 2 mirrors the role of the in-bound TLP weights in Fig. 1.
training. If a filter-bank {b;(m)} can be found such that the resulting
Of particular interest in modeling studies of real neurahultivariate output functionf(v1,---,vr) can be expressed
systems that generate action potentials is the case of spifig-a linear superposition of sigmoidal univariate functions
output models. This case has been studied by appending a L
(hard) threshold-trigger opgrator to th.e output of the previously Flug, - vp) = Z ri8;(v;) (17)
discussed MVM model. This formulation leads to exact models o
by defining “trigger regions” (TR’s) of the system as the locus

of points (vy,vs,---,vy) in the L-dimensional space which for some values of the paramete{rsj,'ej}, then t.he MVM
correspond to the appearance of an output spike [25], [28])d the TLP representations are equivalent. This equivalence
[29]. condition can be broadened to cover activation functions

The introduction of a hard-thresholtiat the output of the other than sigmoidal (e.g., polynomial, which are directly
nonlinear functionf(-) implies that the aforementioned TR’scompatible with the multinomial form of the MVM), in order

are demarcated by the “trigger boundaries” (TB'’s) defined 9 relax the conditions under which the continuous multivariate
the equation function f(-) can be represented (or approximated adequately)

by a linear superposition of univariate functions.
Flos, vz, yv) = 6. (13)  “This fundamental issue of representation of an arbitrary

These TB'’s correspond to the “decision boundaries” encou#Rntinuous multivariate function by the superposition of uni-
tered in TLP applications with binary outputs, and may tap@riate functions was originally posed by Hilbert in 1902
any form depending on the functiof(-), i.e., they are not (his so-called “13th problem”) and has been addressed by
limited to piecewise rectilinear forms dictated by TLP conolmogorov’s representation theorem in 1957 [16] and its

figurations. lllustrative examples of this important comparisghi@ny elaborations (see, for instance, [7], [20], and [36]). This
are given in the following section. issue has regained importance with the increasing popularity

of feedforward neural networks as “function approximators,”
especially since actual implementation of Kolmogorov's the-
. . orem leads to rather peculiar univariate functions [7]. The
To facilitate the comparison between the two mMOdise of fixed activation functions (possibly nonsigmoidal) in
els/networks of Figs. 1 and 2, we first assume that the outpysiiayer perceptrons to obtain universal approximators has
unit of the TLP is Ilngar [sge 5)]. Then, usmg_the Taylor serigsuen recently studied by various investigators [1], [5], [11],
expansion of each sigmoidal function about its offset vallie [14] Resolution of this issue with regard to nonlinear system

IV. COMPARISON BETWEEN TLP AND DVM

0 ‘ modeling is achieved by reference to their canonical Volterra
T . .
Si(ujn) = Zai(ej)uj,n (14)  representation, as outlined below.
=0 In the context of MVM, this issue concerns the representa-
we can express the output as tion of the output multivariate functiop = f(vy,---,vr) by
K o means of linear superposition of selected univariate functions
Yn = ZT]' ZO&Z(QJ) {gj(vj)} as
jZIM = M flor, o) =rgi(v) + - +roge(vr). (18)
X Z Z Wiy Wim: Tnmy *° Tn,m,  (15)  Note that, unlike (17), (18) allows for univariate contin-
mi=0  m;=0 uous functions{g,(-)} that have arbitrary forms (suitable

which has the form of a Volterra series expansion, whef@’ €ach application) leading to the network model form
Yn = y(n), Tnm = z(n —m) and shown in Fig. 3. The latter is akin to the general “parallel

cascade” models previously proposed for nonlinear time-
K . . . .
I _ — 16 invariant discrete-time systems [17], [30].
i(my, - mi) = Z 75 (0;)Wjmy - Wimi- (16) " \when the representation of (18) is possible, we can view the
=1 resulting model as a “generalized TLP” network with arbitrary
The Taylor expansion coefficientsy;(6;)} depend on the activation functions that need not be sigmoidal. If we wish
offsets{#, } and are characteristic of the sigmoidal or any otheo facilitate comparisons with MVM, we can use polynomial
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Fig. 3. Schematic diagram of the “separable Volterra network” (SVN) witlynomialactivation functions{g;} in the hidden units. The output unit is a
simple adder. This network configuration is compatible with Volterra models of nonlinear systems (mappings).

activation functions{g;(v;)}, leading to what we will term a  Consider a Volterra system (mapping) that has two modes
“separable Volterra network” (SVN). (b1,b2) with respective output§wvi,v2) and the quadratic
lllustrative comparisons between TLP and SVN are madgstem nonlinearity;f(v;,v2) = v? + v3, with output unit
easier when the sigmoidal functios§-) of the TLP tend to threshold:# = 1. Then (20) defines the circular TB? +v3 =
a hard-threshold operatdr(-), defining piecewise rectilinear 1, in the (vy,v2) plane. For simplicity of demonstration, let
TB's in the {u,} space on the basis of the equation us assume here thaf(m) = 6(m) andbz(m) = 6(m — 1);
which implies thatv; (n) = z(n),v2(n) = z(n — 1), and an
K output spike occurs wher?(n) +x?(n—1) > 1, defining the
ZTJ'T(“J') =0 (19 Gircular TB shown in Fig. 4, with the “trigger region” found
=1 outside the circle. This system can be precisely modeled by
where# is the employed hard threshold at the output. a SVN having two hidden units (corresponding o the two
On the other hand, the use of a hard-threshpldt the modes) Wlth second-degree polynomial actlvafuon functions
output of the MVM (or SVN) yields curvilinear TB'’s in the and a unity threshold at the output (adder) unit. In order to

{v;} space, defined by the equation approximate this circular TB by means of a TLP, we must
use a large numbek of hidden units which define different
flug, - vp) = 6. (20) linear combinations of the two mode outputs and approximate

the circular TB with K rectilinear segments over the domain

Since both the K-dimensional u-space and theL- defined by the training data set. An exact TLP model with the
dimensionak-space are defined by linear transformations slame predictive ability as this two-mode SVN can be obtained
the input vectors, it is evident that the TB’s defined by (19) arehly when the number of hidden units tends to infinity.
(20) cannot coincide unleg¥-) is piecewise rectilinear. If(-) As an illustration of this, we train a TLP with three hidden
is curvilinear, then we can achieve a satisfactory piecewisaits using 500 datapoints generated by a uniform white-noise
rectilinear approximation of the curvilinear TB by increasingnput that defines the square domain of values demarcated
the numberK of rectilinear segments. Exact equivalence is Fig. 4 by dashed line. The resulting approximation is the
achieved ad{ tends to infinity. This is illustrated below with triangle defined by the three rectilinear segments shown with
a simple example. dotted lines in Fig. 4. Considerable areas of “false positives”
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Fig. 4. lllustrative example of circular “trigger boundary” (solid line) being approximated by three-layer perceptron (TLP) with three hiddedefumitg
the piecewise rectilinear (triangular) “trigger boundary” marked by the dotted lines. The training set is generated by 500 datapoints of uteforoisevhi
input that defines the square domain demarcated by dashed lines. The piecewise rectilinear approximation improves with increasing numbenit$ hidden u

of the TLP, assuming polygonal form and approaching asymptotically a precise representation. Nonetheless, a SVN with two hidden units (of second
degree) yields a precise and parsimonious representation (model).

and “false negatives” are evident, which can be reduced ontyfacilitate comparisons of the relative importance of different
by increasing the number of hidden units and obtaining polygidden units (as well as the relative importance of different
onal approximations of the ideal circular TB. The obtainegolynomial terms) based on the absolute value of the coef-
TLP approximation depends on the specific training set afidients of their polynomial activation functions. The SVN
the initial parameter values—although fundamentally limiteidrmulation also yields insight into the degree and form of
to a number of rectilinear segments equal to the number )fstem nonlinearities, as well as captures the input patterns
employed hidden units. that critically affect the output (akin to principal modes in a
Since many real nonlinear systems (physical or physiolodionlinear context).
cal) have been shown to be amenable to \Volterra representaAnother interesting comparison concerns the number of
tions, it is reasonable to expect that the SVN formulation wiffeeé parameters contained in the three types of models (TLP,
yield more compact and precise models than the traditioddVM, SVN). If we use the same number ¢f/ + 1) input
TLP formulation. In addition, the SVN formulation is notUnits, then the total number of parameters for TLP with single-
practically limited to low-order nonlinearities (like the tradi-Parameter sigmoidal functions is
tional Volte_rra modelin_g approach based on kernel estimgtion) Nowp = (M +3)K +1 1)
thus allowing the obtainment of compact high-order nonlinear

models with ordinary computational means. where K is the number of hidden units. In the case of MVM,
This example demonstrates the potential benefits ifnthe highest power necessary for the adequate multinomial

model/network compactness and precision that may accre@resentation of the functiofy-) is @, then the total number
from using the SVN configuration instead of the conventionaf parameters is

TLP, whenever the “decision boundaries” (or TB’s) are (Q+L)!

curvilinear. Nyvv = L(M + 1) + W (22)
Note that for SVN configurations, the output weights are "

set to unity (i.e., the output unit is a simple adder) withowtvhere L is the number of employed modes (basis functions).

loss of generality, and the inbound weight vectors for eaclearly, Nyvv depends critically onl and @ due to the

hidden unit are normalized to unity Euclidean norm in orddactorials in (22). Note that the number of free parameters of
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Fig. 5. The exact first-order kernel (solid line) and its estimate for the noise-free case using a TLP with four hidden units (dashed line). Note that the
SVN and LET estimates are visually indistinguishable from the exact kernel in this case.

the original DVM is given by (22) forl. = M + 1. Finally, training of high-order nonlinear models in the SVN or TLP
in the case of SVN (of the same deg@efor all polynomial form, that allow indirect evaluation of the system kernels from
activation functions), the total number of parameters is  the obtained network parameters. In this section, we examine
the relative efficacy of these kernel estimation methods and
Nsvn = L(M +Q +3) (23) " demonstrate the superior performance of the SVN formula-

and represents a compromise (in terms of parameterizatii@) over the TLP approach for high-order Volterra system

between TLP and MVM. We must keep in mind th&tin modeling.

(21) may have to be much larger thdnin (22) and (23) in It was shown earlier that equivalent Volterra kernels can be
order to achieve the same model prediction accuracy. Thg{s),tained from a TLP when the sigmoidal activation functions

parsimony using SVN depends on our ability to determir@e expanded in a Taylor series as in (16) [38]. For the case
the minimum number of modegl) necessary for adequateof SVN with polynomial activation functions

prediction accuracy in a given application.

It is important to note that the type of available training data
is also critical. If the available input data is rich in informatioRne expression for theth-order Volterra kernel is slightly
content (i.e., approaching the case of quasiwhite noise signg|#jerent
then the training of the network will be most efficient by
exposing it to a diverse repertoire of possible inputs. However, ki(my,---,m;) = Z O Wimy * Wi, (25)
if the training data is a limited subset of the entire input data J
space, then the system will be tested only partially and t
results of network training will be limited in their ability to
generalize.

9i(vj) = a0y + v+ i+ (24)

ti%us \olterra kernel estimation of any order can be ac-
complished by training a SVN with given input—output data
and using (25) to reconstruct the kernels from the obtained
weights{w; .} and the coefficient§c; ,} of the polynomial
activation functions (all the unknown parameters obtained
As indicated previously, Volterra models can be used forwaa error backpropagation). If the activation functions are
very broad class of nonlinear systems. However, applicationsnpolynomial analytic or continuous functions, then the coef-
of this modeling methodology to real systems have bedigients{c; ;} correspond to a Taylor expansion or Weierstrass
hindered by the impracticality of estimating high-order kernebspproximation, respectively.
(corresponding to high-order nonlinearities). A solution to As an illustrative example of the relative efficacy of
this important problem can be acheived by backpropagatitivese kernel estimation methods, we simulate a second-order

V. EXAMPLES OF VOLTERRA SYSTEM MODELING
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Fig. 6. (a) The exact second-order kernel which is indistinguishable from the SVN and LET estimates. (b) TheTLP estimate of the second-order kernel
using four hidden units for the noise-free case. Increasing the number of TLP hidden units to eight did not yield significant improvement but added
considerable computational burden.

Volterra system with memory/ = 25 (having the first-order estimates, although at considerably different computational

kernel shown in Fig. 5 in solid line and the second-ordaost (LET is about 20 times faster than SVN in this case).

kernel shown in the top panel of Fig. 6) using a uniformlote that LET requires five Laguerre functions in this example

white-noise input of 500 datapoints. We estimate the first- affice., 21 free parameters need be estimated) while SVN needs
second-order kernels of this system via TLP, SVN, and LE®nly one hidden unit with a second-degree activation function

which was recently introduced to improve kernel estimatiofiesulting in 29 free parameters). Of course, the number of

over traditional methods by use of Laguerre expansions mquired Laguerre functions and hidden units may vary from

the kernels and least-squares estimation of the expansapplication to application.

coefficients [26]. In this noise-free example, the LET and As expected, the TLP requires more free parameters in this
SVN approaches yield precise first- and second-order kermglample (i.e., more hidden units) and its predictive accuracy
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1ST—ORDER KERNELS FOR NOISY CASE (SNR=0 dB)

~-0.014
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Fig. 7. The exact first-order kernel (solid line) and the three estimates obtained in the noisy case (SN} via LET (dashed line), SVN (dot-dashed
line), and TLP (dotted line). The LET estimate is the best in this example, followed closely by the SVN estimate in terms of accuracy—although requirin
more computing time for training. The TLP estimate (obtained with four hidden units) is the worst in accuracy and computationally most demanding.

improves with increasing numbeé¢ of hidden units, although longer computing time (about 20 times longer &r = 4).

the incremental improvement gradually diminishes. Since tAde kernel estimates are used here as the means of compar-
computational burden for training increases with increasirigon. These results demonstrate the considerable benefits of
K, we are faced with an important tradeoff: improvement ibsing SVN configurations instead of TLP for Volterra system
accuracy versus additional computational burden. By varyimigodeling purposes, although there may be some cases where
K, we determine a reasonable compromise for a TLP withe TLP configuration has a natural advantage, e.g., systems
four hidden units, where the number of free parameters is 1%jth sigmoidal output nonlinearities.

and the required training time is about 20 times longer than!n the chosen example, LET appears to yield the best model
SVN (or 400 times longer than LET). The resulting TLP kernéind associated kernel estimates. However, its application is
estimates are not as accurate as the SVN or LET estimatesP@¢tically limited to low-order kernels (up to third) and,
illustrated in Figs. 5 and 6 for the first-order and the seconH1erefore, it is the preferred method only for systems with
order kernels, respectively. Note that SVN training requird@W-order nonlinearities. On the other hand, SVN offers not
200 backprop iterations in this example versus 2000 iteratiof@ly an attractive alternative for low-order kernel estimation
required for TLP training. Thus, SVN appears superior to TL%nd modeling, but also anique practical solution when the

in terms of accuracy and computational effort in this exampt Stem nonhneatL_rltlf_s arfe of high Qrde':’lt:e lsa\t},ir conf_stltut?s
of a second-order Volterra system. e primary motivation for proposing the configuration

. . for nonlinear system modeling.

To make the comparison more relevant to actual applica- . . . .

. ) . . . To demonstrate this important point, we consider an arbi-

tions, we add independent Gaussian white noise to the output. . : : .
: ) . : . —trarily defined high-order nonlinear system described by the

data for a signal-to-noise ratio of 0 dB (i.e., the noise variance X

) . Utput equation

is equal to the noise-free output mean-square value). T?]e

obtained first-order kernel es.tima-ltes via the 'Fhree methods Y= (vl +0.8v3 — 0.61;%1;2) sinf(vy + v2)/5] (26)

(LET, SVN, TLP) are shown in Fig. 7 along with the exact

kernel, and the obtained second-order kernel estimates wfeere the “internal’variablegu;,v2) are given by the differ-

shown in Fig. 8. The LET estimates are the most accurate &ftce equations

quickest to obtain, followed closely by the SVN estimates in B .

terms of accuracy—although SVN requires longer computing”* (n) =1.2vi(n — 1) = 0.6v(n — 2) + 0.52(n — 1) (27)

time (by a factor of 20). The TLP estimates are clearly inferior v2(n) = 1.8v2(n — 1) — 1.1va(n — 2) + 0.2v2(n — 3)

to either LET or SVN estimates in this example and require +0.1z(n — 1) + 0.1x(n — 2) (28)
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to seventh-order (note that the selected system is of infinite
order, i.e., it has Volterra kernels of all orders, although
of gradually diminishing size). Training of this SVN with
the aforementioned data required 5000 iterations and much

0
N
)
)
i

)

)

‘ ettt longer computing time than LET (about 300 times longer).
255 s I . . P
,z;%i’z.;s;:.,g:;:::::::::.. Training of a TLP model with these data yielded less prediction
< e .

% ‘l.:::§:§:§:§ig:g:g:g:gg:o accuracy than the SVN for comparable numbers of hidden
.',555’:g§§§§§§§§§§§§§§§=“’ units and free parameters. For instance, a TLP with eight
))( e hidden units yields an output NMSE of 10.3% (an error that

can be gradually but slowly reduced by increasing the number
of hidden units). Note that the number of free parameters in
this example is: 225 and 165 for TLP and SVN, respectively
(@) [see (21) and (23)]. An illustration is given in Fig. 9, where
the model predictions for the five-unit SVN, the eight-unit
TLP and the third-order LET are shown along with the actual
system output for a segment of test data.

The important practical issues of how we determine the
appropriate number of hidden units and the appropriate degree
of polynomial nonlinearity in the activation functions are
addressed by preliminary experiments and successive trials.
For instance, the degree of polynomial nonlinearity can be
established by preliminary testing of the system under study
with sinusoidal inputs and subsequent determination of the
highest harmonic in the output via fast Fourier transform
(FFT), or by varying the power level of a white-noise input and
fitting the resulting output variance to a polynomial expression
() [21], [22]. On the other hand, the number of hidden units can
be determined in general by successive trials in ascending
order (i.e., adding new units and observing the amount of
error reduction) or by pruning methods that eliminate units
with weak polynomial coefficients. Note that the input weights
in the SVN are kept normalized to unity Euclidean norm
for each hidden unit; thus the polynomial coefficients are a
true measure of the relative importance of each hidden unit.
A systematic method for determining the required number
of hidden units for second-order \Volterra systems has been
proposed via eigen-decomposition (principal dynamic modes)
in [27].
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Fig. 8. The second-order kemel estimates obtained in the noisy caseVolterra models of nonlinear systems constitute a canonical
(SNR= 0 dB) via LET (a), SVN (b), TLP (c). Relative performance ,isrf,; resentation for a broad class of systems and offer a general
the same as described in the case of first-order kernels (see caption of Fig. 7). . . .
mathematical framework to assess the relative efficacy of
various network implementations for nonlinear mapping of
andz(n) denotes the discrete-time input signal that is chosémput vectors onto output scalars (or vectors). A popular class
in this simulation to be a 1024-point segment of Gaussiar feedforward neural networks, the TLP shown in Fig. 1, was
white noise with unit variance. Use of LET with six Laguerranalyzed in the Volterra context and compared to a network
functions to estimate truncated second- and third-order Volteaechitecture, termed SVN, that employs polynomial activation
models yields output predictions with normalized mean-squéatenctions, as shown in Fig. 3. The latter is shown to result
errors (NMSE) of 47.2% and 34.7%, respectively. Note th&iom the MVM obtained from discrete kernel expansions (see
the obtained kernel estimates are seriously biased becaus€igf 2). Comparisons were made with respect to the relative
the presence of higher order terms in the output equation tlefficacy of these representations, and conditions for their
are treated by LET as correlated residuals in least-squafesctional equivalence were explored. It was shown that the
estimation. Use of the SVN approach (employing five hiddegeneral discrete-time Volterra model is functionally equivalent
units of seventh-degree) yields a model of improved predictiea a TLP when the number of its hidden units tends to infinity.
accuracy (NMSE= 6.1%) and mitigates the problem of kernel Although all three approaches (TLP, SVN, MVM) may
estimation bias by allowing estimation of nonlinear terms ugpresent the input—output relation of nonlinear systems, their



1432 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 6, NOVEMBER 1997

1:xe 2:xe.ps8 S:xe.ppbd “ixe.pkd
—20.000 -15.000 - —10.000 -5.0000
5.0000 10.000 15.000 20.000

WMMWMWM N’L*

MMVWWW “NWW s

MWWWW

™ L e T T T T T T T T T [ T T T T T T T T T [ T T T

500 550 600 650 700 750

Fig. 9. The model predictions for a high-order system using LET with a truncated third-order Volterra model (trace 4), SVN with five hidden units of
seventh-degree (trace 3), and TLP with eight hidden units (trace 2), along with the exact system output (trace 1).
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