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Abstract—This paper proposes the use of a class of feedforward
artificial neural networks with polynomial activation functions
(distinct for each hidden unit) for practical modeling of high-
order Volterra systems. Discrete-time Volterra models (DVM’s)
are often used in the study of nonlinear physical and physiological
systems using stimulus-response data. However, their practical
use has been hindered by computational limitations that confine
them to low-order nonlinearities (i.e., only estimation of low-order
kernels is practically feasible). Since three-layer perceptrons
(TLP’s) can be used to represent input–output nonlinear map-
pings of arbitrary order, this paper explores the basic relations
between DVM and TLP with tapped-delay inputs in the context
of nonlinear system modeling. A variant of TLP with polyno-
mial activation functions—termed “separable Volterra networks”
(SVN’s)—is found particularly useful in deriving explicit relations
with DVM and in obtaining practicable models of highly nonlin-
ear systems from stimulus-response data. The conditions under
which the two approaches yield equivalent representations of the
input–output relation are explored, and the feasibility of DVM
estimation via equivalent SVN training using backpropagation
is demonstrated by computer-simulated examples and compared
with results from the Laguerre expansion technique (LET). The
use of SVN models allows practicable modeling of high-order
nonlinear systems, thus removing the main practical limitation
of the DVM approach.

Index Terms—Laguerre kernel expansion, nonlinear system
modeling, polynomial activation functions, separable Volterra
network, three-layer perceptrons, Volterra kernels, Volterra mod-
els.

I. INTRODUCTION

T HE Volterra approach to nonlinear system modeling has
been used extensively in studies of physiological (and

especially neural) systems for the last 25 years, following
the customary cycle of exciting advances and confounding
setbacks (for partial review, see [21]–[24]). On the other
hand, feedforward artificial neural networks, and three-layer
perceptrons (TLP’s) in particular, have emerged in recent years
as a promising approach to nonlinear mapping/modeling of
input–output data (see, for instance, [13], [18], [31], and [32]).
The rising interest in applications of these two approaches to
nonlinear system modeling motivates this comparative study
that seeks possible cross-enhancements from their combined
use.
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Specifically, the study of high-order nonlinear physiological
systems using discrete-time Volterra models (DVM’s) is im-
peded by computational limitations in estimating high-order
kernels. This problem may be mitigated by training equivalent
TLP models with the available experimental data and seeking
indirect estimation of high-order Volterra models via TLP
with polynomial activation functions. Note that the latter are
distinct for each hidden unit (i.e., have different coefficients),
thus not contradicting previous results on the necessity of
nonpolynomial activation functions with fixed form across
all hidden units [2], [19]. On the other hand, applications of
TLP can benefit from methodological guidance in selecting the
appropriate network architecture (e.g., the number or type of
hidden units—a matter critical for determining the efficacy of
the training process and the predictive ability of the model) and
from enhancements in scientific interpretation of the obtained
results, based on equivalent DVM estimated from the same
data.

The relationship between Volterra models (Volterra series)
and feedforward multilayer neural networks has been pre-
viously examined in a rudimentary fashion [6], [12], and
methods have been suggested for the indirect estimation of
Volterra kernels if an equivalent TLP with sigmoidal or
polynomial activation functions can be successfully trained
[24], [38]. Chen and Manry have employed “polynomial basis
functions” to model multilayer perceptrons and suggested
that the resulting neural network is “isomorphic to conven-
tional polynomial discriminant classifiers or Volterra filters”
[4]. Specht has examined a polynomial adaline architecture
for classification tasks [35]. Sandberg has given a general
mathematical proof of a relevant aproximation theorem [33].
Polynomial perceptron architectures have been explored in
the problem of communication channel equalization [3] and
cochannel interference suppression [39], where the polynomial
perceptron is defined as employing a full Volterra series
expression in cascade with a sigmoidal activation function—an
architecture far less parsimonious than using polynomial ac-
tivation functions in a TLP (distinct for each hidden unit),
as suggested in this paper. Volterra approximations of per-
ceptrons for nonlinear noise filtering and beamforming have
also been explored empirically [15]. Of particular theoretical
and methodological interest is the relation between artificial
neural networks and the generalized Fock space framework for
nonlinear system modeling [8], [9], as well as the associated
optimal interpolative nets [10], [34]. Finally, the established
concept of “polynomial threshold gates,” as applied to Boolean
(switching) functions [13], is affine to—but distinct from—the
concept of polynomial activation functions in feedforward
neural networks.
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Fig. 1. Schematic diagram of the single-output three-layer perceptron (TLP) where the input vector represents the(M + 1)-point input epoch at each
discrete-timen. The jth hidden unit performs a sigmoidal transformationSj(�) on the weighted sum of the input values with an offset�j . The output unit
may perform a sigmoidal or linear transformationS0(�) on the weighted sum of the outputs of the hidden units.

This paper examines the fundamental relations between
DVM and TLP with tapped-delay input, and focuses on their
cooperative use for practical modeling of nonlinear dynamic
systems from stimulus-response sampled data. Both model
types are shown to be able to represent nonlinear input–output
mappings (systems), thus according them equal distinction as
“universal approximators.” Of particular interest is the use of
distinct polynomial activation functions in the hidden units
of TLP architectures that achieve modeling efficiencies and
facilitate comparisons with DVM. Sections II and III review
the basics of the TLP and DVM approaches, respectively.
Section IV compares the two approaches, introduces the “sep-
arable Volterra networks” and discusses their equivalence
conditions. Section V examines the relative efficacy of these
approaches in modeling Volterra systems through computer
simulated examples, where the Laguerre expansion technique
(LET) is employed for DVM kernel estimation [26].

II. THREE-LAYER PERCEPTRON WITHSINGLE OUTPUT

The basic class of single-output TLP depicted in Fig. 1, im-
plements a nonlinear mapping of the input epoch, represented
by the vector , on the output scalar

at each time . Since this study is concerned with input
data that are ordered in discrete time sequence, we consider
a tapped-delay input, where for each time
index . The case of a single output is considered in order

to conform with the formalism of the Volterra expansion of a
single-output system.

Each hidden unit of the TLP performs a nonlinear trans-
formation of a weighted sum of the respective inputs for
each , using the “activation function” . A sigmoidal or
“squashing” function is traditionally used for this purpose.
However, other functions can be used as well (e.g., poly-
nomial, sinusoidal, Gaussian etc., or combinations thereof)
depending on the objectives of a particular application. Thus,
the output of the th hidden unit for each is

(1)

where

(2)

Clearly, for a tapped-delay network, is the convolution
of the input signal with a finite impulse response .
If a sigmoidal activation function is used, then another free
parameter, , is introduced as the characteristic “threshold”
or “offset” of the th unit. For instance, the “logistic” function

(3)

is a commonly used sigmoidal activation function. Note that,
in addition to the offset , the exponent contains another
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parameter , which is however fixed—i.e., it is not estimated
from the data but is specified by the user. The parameter

determines the transition slope from level 0 to level 1,
and may affect the stability and convergence of the back-
propagation training algorithm. As increases the sigmoidal
transformation tends to a “hard threshold.” Various other
sigmoidal functions have been used (e.g., etc.)
in the TLP literature.

For the output unit, we have

(4)

In order to simplify the comparison between this TLP
network and the DVM that seeks to perform the same in-
put–output mapping, we will consider the case of a linear
output unit

(5)

Note that many other classes of feedforward neural networks
have been explored in the literature (e.g., having multiple hid-
den layers, nonsigmoidal activation functions, nondeterminis-
tic weights, bilinear weighted sums, units with intrinsic dy-
namics, etc.). It is critical to note that the use of nonsigmoidal
activation functions may offer significant methodological ad-
vantages and yield modeling efficiencies (as elaborated in
Sections IV and V).

In addition to feedforward neural networks, architectures
with lateral connections between same-layer units or feed-
back connections between different layers (recurrent networks)
have been explored in the neural network literature and are
suitable for certain applications. However, they result in far
more complicated relations with the DVM that impede lucid
comparisons. Hence, the scope of this study is limited to an ex-
plicit comparison between this relatively simple class of TLP
networks and the DVM, since they represent two fundamental
and general model forms for nonlinear input–output mappings
of time-series data.

III. D ISCRETE-TIME VOLTERRA MODELS

The DVM is valid for all continuous, causal, nonlinear,
time-invariant systems/mappings with finite memory

(6)

where denotes the input data sequence and the
output data sequence. The kernel functions describe
the nonlinear dynamics of the system (i.e., fully characterize
the nonlinear input–output mapping) and they are symmetric
(i.e., invariant to any permutation of their arguments). The
input–output relation described by the DVM of (6) is func-
tionally equivalent to the mapping effected by the TLP of
Fig. 1.

The DVM can be viewed as a multivariate power series
(multinomial, if of finite order) expansion of a nonlinear
function

(7)

where the argument of corresponds to the input epoch
values at each time, i.e., . The th functional
term of (6) is an -tuple convolution involving time-shifted
versions of the input epoch over the interval and
the th-order kernel . This hierarchical structure defines a
canonical representation of stable nonlinear causal systems
(mapping operators), where theth term represents theth-
order nonlinearities. Causality implies that future input values
do not affect the present value of the output. Stability implies
absolute summability of the Volterra kernels and convergence
of the corresponding series of uniform bounds [22].

In this formulation, the class of linear systems is represented
simply by the first-order term (the first-order kernel is the
familiar “impulse response function”) and the nonlinear system
dynamics are explicitly represented by the corresponding high-
order kernels. The degree of system nonlinearity determines
the required number of kernels for a model of adequate
predictive capability, subject to practical computational con-
siderations.

This modeling approach has been used extensively in studies
of physiological systems (especially neural systems) over the
last 25 years. Following Wiener’s pioneering ideas, its use
has been combined with approximate white-noise stimuli (e.g.,
band-limited white-noise, binary, and ternary pseudorandom
signals, etc.) in order to secure exhaustive testing of the system
and facilitate the estimation of high-order kernels [37].

Extensive studies have explored the limits of applicability
and efficient implementation of this approach, leading to
successful applications to low-order nonlinear systems (up
to third order). This modeling approach has been extended
to the cases of multiple inputs and multiple outputs (in-
cluding spatiotemporal inputs in the visual system), point-
process inputs/outputs (suitable for neuronal systems receiv-
ing/generating action potentials) and time-varying systems
often encountered in physiology. The main limitations of this
approach are the practical inability to extend kernel estimation
to orders higher than third (due to increasing dimensionality
of kernel representation) and the strict input requirements (i.e.,
approximate white noise) for unbiased kernel estimation when
truncated models are obtained. These limitations provide the
motivation for seeking the cooperative use of TLP models.

If we consider an expansion of the Volterra kernels on a
complete basis of basis functions defined over the
system memory , then the DVM of (6) becomes

(8)

where

(9)
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Fig. 2. Schematic diagram of themodified Volterra model (MVM) defined by (9) and (12). The middle-layer unitsfBjg form a linear filter-bank
thatspans the system dynamics and generates the signalsfvj(n)g. The latter are the inputs of the multivariate nonlinear functionf(�) that represents
the nonlinearities of the Volterra model.

and are the kernel expansion coefficients .
For instance,

(10)

(11)

are the expansions for the first- and second-order kernels
satisfying the weak condition of square summability over

. These expansions are extended to all kernels present
in the system.

Note that the variable is a weighted sum of the
input epoch values (i.e., discrete convolution), akin to the
variable of (2). This is an important common feature
of the two canonical representations (TLP and DVM). It is
critical to note that, the number of basis functions
required for adequate approximation of the kernels can be
made much smaller than by choosing the proper basis

in a given application. This leads to more compact
models due to reduction of the dimensionality of the -
dimensional function in (7), yielding the -dimensional
output function

(12)

which is equivalent to the expression of (8). The expression
of (8) can be viewed as a multivariate (Taylor) expansion
of an analytic nonlinear function or as a multinomial
approximation of a nonanalytic function , termed the
modified Volterra model (MVM).

The MVM corresponds to the functional diagram (network)
of Fig. 2, where the middle-layer units form a linear
filter-bank with impulse response functions perform-
ing discrete-time convolutions with the input data, as indicated
by (9). This filter-bank may be formed by an arbitrary (general)
set of basis functions or it may be “customized” for the
particular dynamic characteristics of a given system (mapping)
to achieve compactness and computational efficiency (possibly
using an adaptive approximation process). This customized
basis can be constructed from estimates obtained from a
general basis (e.g., the Laguerre set for causal systems). One
such method has been recently proposed that uses eigen-
decomposition of an estimated second-order Volterra model to
select the functions as the “principal dynamic modes”
of the nonlinear system [27], [28]. The pursuit of parsimony
motivates the search for the most efficient basis , which
may or may not be orthogonal.

This type of decomposition of a nonlinear system was first
proposed (in continuous time) by Wiener in connection with
a complete orthonormal basis and a Gaussian white
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noise input [37]. In Wiener’s formulation, the variables
become independent Gaussian processes and the nonlinearity

is further expanded on a Hermite orthonormal basis for
the purpose of nonlinear system identification. The Wiener
formulation may not be a practical or desirable option in a
given application; nonetheless, it represents a powerful con-
ceptual framework for nonlinear modeling, demonstrating the
ability of white-noise inputs to extract sufficient information
from the system for constructing nonlinear models. Conse-
quently, white-noise stimuli (whenever available) constitute an
effective ensemble of inputs for system modeling or network
training.

Of particular interest in modeling studies of real neural
systems that generate action potentials is the case of spike-
output models. This case has been studied by appending a
(hard) threshold-trigger operator to the output of the previously
discussed MVM model. This formulation leads to exact models
by defining “trigger regions” (TR’s) of the system as the locus
of points in the -dimensional space which
correspond to the appearance of an output spike [25], [28],
[29].

The introduction of a hard-thresholdat the output of the
nonlinear function implies that the aforementioned TR’s
are demarcated by the “trigger boundaries” (TB’s) defined by
the equation

(13)

These TB’s correspond to the “decision boundaries” encoun-
tered in TLP applications with binary outputs, and may take
any form depending on the function , i.e., they are not
limited to piecewise rectilinear forms dictated by TLP con-
figurations. Illustrative examples of this important comparison
are given in the following section.

IV. COMPARISON BETWEEN TLP AND DVM

To facilitate the comparison between the two mod-
els/networks of Figs. 1 and 2, we first assume that the output
unit of the TLP is linear [see (5)]. Then, using the Taylor series
expansion of each sigmoidal function about its offset value

(14)

we can express the output as

(15)

which has the form of a Volterra series expansion, where
and

(16)

The Taylor expansion coefficients depend on the
offsets and are characteristic of the sigmoidal or any other

analytic activation function [38]. Likewise, a finite polynomial
approximation can be obtained for any continuous activation
function. Thus, (16) can be used to evaluate the Volterra
kernels of a TLP model of a system. We will return to this
issue in the following section.

In searching for the equivalence conditions between TLP
and MVM, we note that in both cases “hidden” variables are
used (i.e., and , respectively) that are formed by linear com-
binations (convolutions) of the input vector values according
to (2) and (9), respectively. Thus, the role of the filter-bank in
Fig. 2 mirrors the role of the in-bound TLP weights in Fig. 1.
If a filter-bank can be found such that the resulting
multivariate output function can be expressed
as a linear superposition of sigmoidal univariate functions

(17)

for some values of the parameters , then the MVM
and the TLP representations are equivalent. This equivalence
condition can be broadened to cover activation functions
other than sigmoidal (e.g., polynomial, which are directly
compatible with the multinomial form of the MVM), in order
to relax the conditions under which the continuous multivariate
function can be represented (or approximated adequately)
by a linear superposition of univariate functions.

This fundamental issue of representation of an arbitrary
continuous multivariate function by the superposition of uni-
variate functions was originally posed by Hilbert in 1902
(his so-called “13th problem”) and has been addressed by
Kolmogorov’s representation theorem in 1957 [16] and its
many elaborations (see, for instance, [7], [20], and [36]). This
issue has regained importance with the increasing popularity
of feedforward neural networks as “function approximators,”
especially since actual implementation of Kolmogorov’s the-
orem leads to rather peculiar univariate functions [7]. The
use of fixed activation functions (possibly nonsigmoidal) in
multilayer perceptrons to obtain universal approximators has
been recently studied by various investigators [1], [5], [11],
[14]. Resolution of this issue with regard to nonlinear system
modeling is achieved by reference to their canonical Volterra
representation, as outlined below.

In the context of MVM, this issue concerns the representa-
tion of the output multivariate function by
means of linear superposition of selected univariate functions

as

(18)

Note that, unlike (17), (18) allows for univariate contin-
uous functions that have arbitrary forms (suitable
for each application) leading to the network model form
shown in Fig. 3. The latter is akin to the general “parallel
cascade” models previously proposed for nonlinear time-
invariant discrete-time systems [17], [30].

When the representation of (18) is possible, we can view the
resulting model as a “generalized TLP” network with arbitrary
activation functions that need not be sigmoidal. If we wish
to facilitate comparisons with MVM, we can use polynomial
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Fig. 3. Schematic diagram of the “separable Volterra network” (SVN) withpolynomialactivation functionsfgig in the hidden units. The output unit is a
simple adder. This network configuration is compatible with Volterra models of nonlinear systems (mappings).

activation functions , leading to what we will term a
“separable Volterra network” (SVN).

Illustrative comparisons between TLP and SVN are made
easier when the sigmoidal functions of the TLP tend to
a hard-threshold operator , defining piecewise rectilinear
TB’s in the space on the basis of the equation

(19)

where is the employed hard threshold at the output.
On the other hand, the use of a hard-thresholdat the

output of the MVM (or SVN) yields curvilinear TB’s in the
space, defined by the equation

(20)

Since both the -dimensional -space and the -
dimensional -space are defined by linear transformations of
the input vectors, it is evident that the TB’s defined by (19) and
(20) cannot coincide unless is piecewise rectilinear. If
is curvilinear, then we can achieve a satisfactory piecewise
rectilinear approximation of the curvilinear TB by increasing
the number of rectilinear segments. Exact equivalence is
achieved as tends to infinity. This is illustrated below with
a simple example.

Consider a Volterra system (mapping) that has two modes
with respective outputs and the quadratic

system nonlinearity: , with output unit
threshold: . Then (20) defines the circular TB:
, in the plane. For simplicity of demonstration, let

us assume here that and ;
which implies that , and an
output spike occurs when , defining the
circular TB shown in Fig. 4, with the “trigger region” found
outside the circle. This system can be precisely modeled by
a SVN having two hidden units (corresponding to the two
modes) with second-degree polynomial activation functions
and a unity threshold at the output (adder) unit. In order to
approximate this circular TB by means of a TLP, we must
use a large number of hidden units which define different
linear combinations of the two mode outputs and approximate
the circular TB with rectilinear segments over the domain
defined by the training data set. An exact TLP model with the
same predictive ability as this two-mode SVN can be obtained
only when the number of hidden units tends to infinity.

As an illustration of this, we train a TLP with three hidden
units using 500 datapoints generated by a uniform white-noise
input that defines the square domain of values demarcated
in Fig. 4 by dashed line. The resulting approximation is the
triangle defined by the three rectilinear segments shown with
dotted lines in Fig. 4. Considerable areas of “false positives”
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Fig. 4. Illustrative example of circular “trigger boundary” (solid line) being approximated by three-layer perceptron (TLP) with three hidden units defining
the piecewise rectilinear (triangular) “trigger boundary” marked by the dotted lines. The training set is generated by 500 datapoints of uniform white noise
input that defines the square domain demarcated by dashed lines. The piecewise rectilinear approximation improves with increasing number of hidden units
of the TLP, assuming polygonal form and approaching asymptotically a precise representation. Nonetheless, a SVN with two hidden units (of second
degree) yields a precise and parsimonious representation (model).

and “false negatives” are evident, which can be reduced only
by increasing the number of hidden units and obtaining polyg-
onal approximations of the ideal circular TB. The obtained
TLP approximation depends on the specific training set and
the initial parameter values—although fundamentally limited
to a number of rectilinear segments equal to the number of
employed hidden units.

Since many real nonlinear systems (physical or physiologi-
cal) have been shown to be amenable to Volterra representa-
tions, it is reasonable to expect that the SVN formulation will
yield more compact and precise models than the traditional
TLP formulation. In addition, the SVN formulation is not
practically limited to low-order nonlinearities (like the tradi-
tional Volterra modeling approach based on kernel estimation)
thus allowing the obtainment of compact high-order nonlinear
models with ordinary computational means.

This example demonstrates the potential benefits in
model/network compactness and precision that may accrue
from using the SVN configuration instead of the conventional
TLP, whenever the “decision boundaries” (or TB’s) are
curvilinear.

Note that for SVN configurations, the output weights are
set to unity (i.e., the output unit is a simple adder) without
loss of generality, and the inbound weight vectors for each
hidden unit are normalized to unity Euclidean norm in order

to facilitate comparisons of the relative importance of different
hidden units (as well as the relative importance of different
polynomial terms) based on the absolute value of the coef-
ficients of their polynomial activation functions. The SVN
formulation also yields insight into the degree and form of
system nonlinearities, as well as captures the input patterns
that critically affect the output (akin to principal modes in a
nonlinear context).

Another interesting comparison concerns the number of
free parameters contained in the three types of models (TLP,
MVM, SVN). If we use the same number of input
units, then the total number of parameters for TLP with single-
parameter sigmoidal functions is

(21)

where is the number of hidden units. In the case of MVM,
if the highest power necessary for the adequate multinomial
representation of the function is , then the total number
of parameters is

(22)

where is the number of employed modes (basis functions).
Clearly, depends critically on and due to the
factorials in (22). Note that the number of free parameters of
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Fig. 5. The exact first-order kernel (solid line) and its estimate for the noise-free case using a TLP with four hidden units (dashed line). Note that the
SVN and LET estimates are visually indistinguishable from the exact kernel in this case.

the original DVM is given by (22) for . Finally,
in the case of SVN (of the same degreefor all polynomial
activation functions), the total number of parameters is

(23)

and represents a compromise (in terms of parameterization)
between TLP and MVM. We must keep in mind that in
(21) may have to be much larger thanin (22) and (23) in
order to achieve the same model prediction accuracy. Thus,
parsimony using SVN depends on our ability to determine
the minimum number of modes necessary for adequate
prediction accuracy in a given application.

It is important to note that the type of available training data
is also critical. If the available input data is rich in information
content (i.e., approaching the case of quasiwhite noise signals)
then the training of the network will be most efficient by
exposing it to a diverse repertoire of possible inputs. However,
if the training data is a limited subset of the entire input data
space, then the system will be tested only partially and the
results of network training will be limited in their ability to
generalize.

V. EXAMPLES OF VOLTERRA SYSTEM MODELING

As indicated previously, Volterra models can be used for a
very broad class of nonlinear systems. However, applications
of this modeling methodology to real systems have been
hindered by the impracticality of estimating high-order kernels
(corresponding to high-order nonlinearities). A solution to
this important problem can be acheived by backpropagation

training of high-order nonlinear models in the SVN or TLP
form, that allow indirect evaluation of the system kernels from
the obtained network parameters. In this section, we examine
the relative efficacy of these kernel estimation methods and
demonstrate the superior performance of the SVN formula-
tion over the TLP approach for high-order Volterra system
modeling.

It was shown earlier that equivalent Volterra kernels can be
obtained from a TLP when the sigmoidal activation functions
are expanded in a Taylor series as in (16) [38]. For the case
of SVN with polynomial activation functions

(24)

the expression for theth-order Volterra kernel is slightly
different

(25)

Thus Volterra kernel estimation of any order can be ac-
complished by training a SVN with given input–output data
and using (25) to reconstruct the kernels from the obtained
weights and the coefficients of the polynomial
activation functions (all the unknown parameters obtained
via error backpropagation). If the activation functions are
nonpolynomial analytic or continuous functions, then the coef-
ficients correspond to a Taylor expansion or Weierstrass
approximation, respectively.

As an illustrative example of the relative efficacy of
these kernel estimation methods, we simulate a second-order
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(a)

(b)

Fig. 6. (a) The exact second-order kernel which is indistinguishable from the SVN and LET estimates. (b) TheTLP estimate of the second-order kernel
using four hidden units for the noise-free case. Increasing the number of TLP hidden units to eight did not yield significant improvement but added
considerable computational burden.

Volterra system with memory (having the first-order
kernel shown in Fig. 5 in solid line and the second-order
kernel shown in the top panel of Fig. 6) using a uniform
white-noise input of 500 datapoints. We estimate the first- and
second-order kernels of this system via TLP, SVN, and LET,
which was recently introduced to improve kernel estimation
over traditional methods by use of Laguerre expansions of
the kernels and least-squares estimation of the expansion
coefficients [26]. In this noise-free example, the LET and
SVN approaches yield precise first- and second-order kernel

estimates, although at considerably different computational
cost (LET is about 20 times faster than SVN in this case).
Note that LET requires five Laguerre functions in this example
(i.e., 21 free parameters need be estimated) while SVN needs
only one hidden unit with a second-degree activation function
(resulting in 29 free parameters). Of course, the number of
required Laguerre functions and hidden units may vary from
application to application.

As expected, the TLP requires more free parameters in this
example (i.e., more hidden units) and its predictive accuracy
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Fig. 7. The exact first-order kernel (solid line) and the three estimates obtained in the noisy case (SNR= 0 dB) via LET (dashed line), SVN (dot-dashed
line), and TLP (dotted line). The LET estimate is the best in this example, followed closely by the SVN estimate in terms of accuracy—although requiring
more computing time for training. The TLP estimate (obtained with four hidden units) is the worst in accuracy and computationally most demanding.

improves with increasing number of hidden units, although
the incremental improvement gradually diminishes. Since the
computational burden for training increases with increasing

, we are faced with an important tradeoff: improvement in
accuracy versus additional computational burden. By varying

, we determine a reasonable compromise for a TLP with
four hidden units, where the number of free parameters is 112
and the required training time is about 20 times longer than
SVN (or 400 times longer than LET). The resulting TLP kernel
estimates are not as accurate as the SVN or LET estimates, as
illustrated in Figs. 5 and 6 for the first-order and the second-
order kernels, respectively. Note that SVN training required
200 backprop iterations in this example versus 2000 iterations
required for TLP training. Thus, SVN appears superior to TLP
in terms of accuracy and computational effort in this example
of a second-order Volterra system.

To make the comparison more relevant to actual applica-
tions, we add independent Gaussian white noise to the output
data for a signal-to-noise ratio of 0 dB (i.e., the noise variance
is equal to the noise-free output mean-square value). The
obtained first-order kernel estimates via the three methods
(LET, SVN, TLP) are shown in Fig. 7 along with the exact
kernel, and the obtained second-order kernel estimates are
shown in Fig. 8. The LET estimates are the most accurate and
quickest to obtain, followed closely by the SVN estimates in
terms of accuracy—although SVN requires longer computing
time (by a factor of 20). The TLP estimates are clearly inferior
to either LET or SVN estimates in this example and require

longer computing time (about 20 times longer for ).
The kernel estimates are used here as the means of compar-
ison. These results demonstrate the considerable benefits of
using SVN configurations instead of TLP for Volterra system
modeling purposes, although there may be some cases where
the TLP configuration has a natural advantage, e.g., systems
with sigmoidal output nonlinearities.

In the chosen example, LET appears to yield the best model
and associated kernel estimates. However, its application is
practically limited to low-order kernels (up to third) and,
therefore, it is the preferred method only for systems with
low-order nonlinearities. On the other hand, SVN offers not
only an attractive alternative for low-order kernel estimation
and modeling, but also aunique practical solution when the
system nonlinearities are of high order. The latter constitutes
the primary motivation for proposing the SVN configuration
for nonlinear system modeling.

To demonstrate this important point, we consider an arbi-
trarily defined high-order nonlinear system described by the
output equation

(26)

where the “internal”variables are given by the differ-
ence equations

(27)

(28)
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(a)

(b)

(c)

Fig. 8. The second-order kernel estimates obtained in the noisy case
(SNR= 0 dB) via LET (a), SVN (b), TLP (c). Relative performance is
the same as described in the case of first-order kernels (see caption of Fig. 7).

and denotes the discrete-time input signal that is chosen
in this simulation to be a 1024-point segment of Gaussian
white noise with unit variance. Use of LET with six Laguerre
functions to estimate truncated second- and third-order Volterra
models yields output predictions with normalized mean-square
errors (NMSE) of 47.2% and 34.7%, respectively. Note that
the obtained kernel estimates are seriously biased because of
the presence of higher order terms in the output equation that
are treated by LET as correlated residuals in least-squares
estimation. Use of the SVN approach (employing five hidden
units of seventh-degree) yields a model of improved prediction
accuracy (NMSE %) and mitigates the problem of kernel
estimation bias by allowing estimation of nonlinear terms up

to seventh-order (note that the selected system is of infinite
order, i.e., it has Volterra kernels of all orders, although
of gradually diminishing size). Training of this SVN with
the aforementioned data required 5000 iterations and much
longer computing time than LET (about 300 times longer).
Training of a TLP model with these data yielded less prediction
accuracy than the SVN for comparable numbers of hidden
units and free parameters. For instance, a TLP with eight
hidden units yields an output NMSE of 10.3% (an error that
can be gradually but slowly reduced by increasing the number
of hidden units). Note that the number of free parameters in
this example is: 225 and 165 for TLP and SVN, respectively
[see (21) and (23)]. An illustration is given in Fig. 9, where
the model predictions for the five-unit SVN, the eight-unit
TLP and the third-order LET are shown along with the actual
system output for a segment of test data.

The important practical issues of how we determine the
appropriate number of hidden units and the appropriate degree
of polynomial nonlinearity in the activation functions are
addressed by preliminary experiments and successive trials.
For instance, the degree of polynomial nonlinearity can be
established by preliminary testing of the system under study
with sinusoidal inputs and subsequent determination of the
highest harmonic in the output via fast Fourier transform
(FFT), or by varying the power level of a white-noise input and
fitting the resulting output variance to a polynomial expression
[21], [22]. On the other hand, the number of hidden units can
be determined in general by successive trials in ascending
order (i.e., adding new units and observing the amount of
error reduction) or by pruning methods that eliminate units
with weak polynomial coefficients. Note that the input weights
in the SVN are kept normalized to unity Euclidean norm
for each hidden unit; thus the polynomial coefficients are a
true measure of the relative importance of each hidden unit.
A systematic method for determining the required number
of hidden units for second-order Volterra systems has been
proposed via eigen-decomposition (principal dynamic modes)
in [27].

VI. CONCLUSION

Volterra models of nonlinear systems constitute a canonical
representation for a broad class of systems and offer a general
mathematical framework to assess the relative efficacy of
various network implementations for nonlinear mapping of
input vectors onto output scalars (or vectors). A popular class
of feedforward neural networks, the TLP shown in Fig. 1, was
analyzed in the Volterra context and compared to a network
architecture, termed SVN, that employs polynomial activation
functions, as shown in Fig. 3. The latter is shown to result
from the MVM obtained from discrete kernel expansions (see
Fig. 2). Comparisons were made with respect to the relative
efficacy of these representations, and conditions for their
functional equivalence were explored. It was shown that the
general discrete-time Volterra model is functionally equivalent
to a TLP when the number of its hidden units tends to infinity.

Although all three approaches (TLP, SVN, MVM) may
represent the input–output relation of nonlinear systems, their
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Fig. 9. The model predictions for a high-order system using LET with a truncated third-order Volterra model (trace 4), SVN with five hidden units of
seventh-degree (trace 3), and TLP with eight hidden units (trace 2), along with the exact system output (trace 1).

relative efficiency (i.e., number of free parameters and the
required computational effort for estimation/training) may vary
dramatically from application to application. For low-order
Volterra systems, the traditional approach of kernel estimation
(using recent techniques, such as LET) appears to be most
efficient. For high-order Volterra systems, where kernel es-
timation is impractical, SVN is more efficient than TLP for
nonsigmoidal output nonlinearities or whenever curvilinear
“decision boundaries” are involved.

The development of efficient SVN models benefits from
judicious selection of the number of hidden units, which can
be assisted by preliminary estimation of the system “principal
dynamic modes” using a truncated quadratic Volterra model
[27]. The advantages of SVN were demonstrated in avoiding
significant bias in estimating kernels of truncated models for
high-order systems and in rendering feasible the daunting
challenge of high-order nonlinear system modeling. This paper
aims at instigating interest in the study of the relative strengths
and weaknesses of the two approaches, with the goal of their
cooperative use for mutual benefit.
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