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Signal Transformation and Coding in Neural Systems 
VASILIS Z. MARMARELIS M E M B E R ,  IEEE 

Abstract-The subject of signal transformation and coding in neural 
systems is fundamental in understanding information processing by the 
nervous system. This paper addresses this issue at the level of neural 
units (neurons) using nonparametric nonlinear dynamic models. These 
models are variants of the general Wiener-Bose model, adapted to this 
problem as to represent the nonlinear dynamics of neural signal trans- 
formation using a set of parallel filters (neuron modes) followed by a 
binary operator with multiple real-valued operands (equal in number 
to the number of modes). The postulated model constitutes a reason- 
able compromise between mathematical complexity and current neu- 
rophysiological evidence. It incorporates nonlinear dynamics and spike 
generation mechanisms in a fairly general, yet parsimonious manner. 
Although this study has objectives limited to a single unit and repre- 
sents a small contribution in a vast and complex research area, it is 
hoped that it will facilitate progress in the systematic study of the func- 
tional organization of neural systems with multiple units. 

I .  INTRODUCTION 
HE nervous system is a complex structure composed T of a multitude of functional components (sensory re- 

ceptors, neurons, axons, muscle fibers) interconnected in 
cascade, parallel, lateral, and feedback configurations that 
process information (i.e., receive, transform, code, trans- 
mit, and decode) in order to perform specific vital tasks 
in its interactions with the environment and in preserving 
physiological homeostasis. Developments in systems sci- 
ence and cybernetics allow us to formulate the study of 
information flow to, from, and within the nervous system 
as a “systems problem” whereby signals, representing 
information, travel between neural system components 
and are dynamically transformed by them. The use of the 
systems approach is predicated on appropriate conceptual 
and mathematical formalism in describing the “transfer 
characteristics” of the neural system components, their 
interconnections, and the transformed neural signals. In 
the case of the nervous system, the level of system inte- 
gration/decomposition (i.e., at what level of the natural 
hierarchy of functional organization do we focus) may 
range from the subcellular (molecular) to the behavioral; 
however, in this paper, we limit ourselves to the level of 
individual neurons (viewed as the basic operational unit) 
which receive certain input signals and generate, in a 
causal manner, certain output signals. The hope is that 
accurate understanding of the functional properties of the 
“neural unit” will facilitate the study of neural groups 
and networks and allow the construction of “integrated” 
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neural systems of greater organizational complexity with 
specified functional characteristics. 

In this paper, we conceptualize each neuron as a “black 
box” that receives certain input signals and produces cer- 
tain output signals on the basis of a nonlinear dynamic 
‘‘rule” described by an explicit mathematical expression 
(model). The use of the black-box concept for the repre- 
sentation of a single neuron allows us to bypass the com- 
plex biophysical mechanisms that are active at the sub- 
cellular level, and simply concentrate on the input-output 
transformation. This, in turn, allows the development of 
reduced-complexity models for aggregates of neurons and 
the study of their functional properties. 

In developing this mathematical model, we seek a com- 
promise between mathematical complexity and biological 
relevance in order to obtain tractable mathematical for- 
mulations of the problem while preserving the essential 
functional features that have been observed experimen- 
tally. Our goal is to search for unifying operational prin- 
ciples that explain the largest possible amount of current 
experimental evidence and conceptually organize our un- 
derstanding about the system function. One challenging 
aspect of neural system modeling concerns the role of 
nonlinearities. There is no doubt that nonlinearities are 
omnipresent in neural systems and their role is essential 
at least for some aspects of their function. Compressive, 
decompressive, and sigmoid nonlinearities observed in 
sensory receptors, certain types of facilitatory or occlu- 
sive interaction, synaptic gap transmission, and the gen- 
eration mechanism of action potentials are some of the 
most widely recognized examples. The challenge is the 
actual identification of these dynamic nonlinearities and 
their modeling in a manner that is practical and meaning- 
ful from the point of view of advancing our understanding 
of neural function. Finally, one should note the presence 
of extraneous and intrinsic noise that places the modeling 
problem in a stochastic framework. 

In the case of dynamic nonlinearities of black-box sys- 
tems, the possible identification and modeling methods 
can be classified as either parametric or nonparametric. 
The parametric methods require a priori knowledge (or 
postulation) of a specific model in the form of differential 
or difference equations. Nonparametric methods employ 
general model forms of integral equations or functional 
expansions valid for a broad class of dynamic nonlinear- 
ities. The most widely used nonparametric methods are 
referred to as the Volterra-Wiener approach, and are 
based on functional expressions. One such method has 
been adapted to the case of spike data, suitable for iden- 
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tification and modeling of a wide class of neural systems 
by utilizing explicit threshold operators. It is this latter 
method, and its use for understanding signal transforma- 
tion and coding in neural systems, that constitute the fo- 
cus of this paper. 

11. STRUCTURE AND FUNCTION OF NEURAL UNITS 
As mentioned above, we focus on the neuron as the 

basic operational neural unit from the viewpoint of signal 
transformation and coding. The term “transformation” is 
used to indicate the dynamic process of combining input 
information to produce a composite intracellular potential 
at the site of the axon hillock where the generation of ac- 
tion potentials (spikes) takes place; the latter representing 
the “coding” of neural information. Note that the repre- 
sentation of information flow in the nervous system 
(neural signals) is either in the form of “graded poten- 
tials” (GP) or “action potentials” (AP). The latter are 
often referred to as “spikes” (i .e. ,  impulse-like wave- 
forms) and it is accepted that their information content is 
in the interspike time intervals and not in their magnitude 
or shape. The graded potentials are continuous-time sig- 
nals, whose values (like those of the AP’s) are measured 
relative to the “resting potential” of the neuron. The gen- 
eration and transformation of these potentials is accom- 
plished through complex biophysical mechanisms of ex- 
citable tissues (ionic currents arising from changing 
membrane permeabilities), release (and diffusion) of neu- 
rotransmitters in synaptic gap junctions, electrical cou- 
pling in “tight” junctions, and passive “electrotonic” 
spread of potentials. These biophysical mechanisms have 
been studied extensively and are the subject of a vast lit- 
erature (for partial review, see [2], [3], [ 141). In this pa- 
per, we will limit ourselves to those notions, arising from 
this extensive biophysical knowledge, that are relevant in 
the “systems and signals” context of our formulation. 

Let us first review briefly the fundamentals of neuronal 
structure and function that are common (with variations 
in size, geometry, and specific functional attributes) in  
most neurons. The “prototypical” neuron is comprised 
of a cell body (soma), a tree-like structure of fibers (den- 
drites), and a long fiber (axon) with occasional branches 
(collaterals). The axon is attached to the soma at the 
“axon hillock” and, along with its collaterals, ends at 
synaptic terminals (boutons) that are used to pass infor- 
mation onto other neurons through “synaptic junctions. ” 
The soma contains the nucleus and is attached to the trunk 
of the dendritic tree from which it receives incoming in- 
formation. The dendrites are conductors of input infor- 
mation to the soma (input ports) and exhibit usually a high 
degree of tree-like arborization (up to several thousand 
branches). Input information arrives at various sites in the 
dendritic tree and the soma through synaptic terminals of 
other neurons or electrical (tight) junctions. The synaptic 
terminals release chemical transmitters upon stimulation 
by arriving APIs or GP’s, which diffuse across the gap 
(typically 200 A )  of the synaptic junction and induce the 
generation of a “postsynaptic potential” (PSP) at the 

postsynaptic site of the dendrite or soma. The transmitter 
can be excitatory or inhibitory, which determines the rel- 
ative polarity between pre- and postsynaptic potentials. 
The PSP propagates away from its junction in both direc- 
tions in an electrotonic manner (i.e., a way analogous to 
current flow in passive electric cables) leading to atten- 
uation of amplitude and spreading of the waveform [ 131. 
Although passive dendritic fibers are more common, ac- 
tive (or semiactive) ones have also been found [7]. These 
active fibers have voltage dependent permeabilities and 
allow at least partial regeneration of the propagating sig- 
nal, leading to less attenuation of amplitude. This partial 
regeneration property of dendritic membrane should be 
contrasted with the full regeneration property of axonal 
membrane that fully maintains the amplitude of the prop- 
agating AP. The resulting dendritic potentials (DP) merge 
at the various nodes of the dendritic tree and eventually 
arrive at the soma where, combined with potentials gen- 
erated directly at the soma by possible somatic junctions, 
they produce the composite intracellular potential (CIP) 
at the site of the axon hillock. Note that the merging of 
DP’s is, most likely, a nonlinear operation because the 
generation of these potentials is due primarily to migra- 
tion of sodium ions, which may lead to sigmoid saturation 
(clipping). 

There are two types of neurons: those which generate 
AP’s at the axon hillock through a threshold mechanism, 
and those which do not. The latter transmit through their 
axon the CIP as a graded potential and the former gener- 
ate a sequence of AP’s (spike train) if the values of the 
CIP exceed a certain threshold. The transmission of GP’s 
through the axon, as carriers of information, is not effec- 
tive except over very short distances ( < 0 . 3  mm) owing 
to rapid attenuation of GP’s with distance. Therefore, the 
use of this communication mode is limited to neurons with 
very short axons (e.g. ,  photoreceptors, horizontal, and bi- 
polar cells in the retina). On the other hand, AP’s can 
propagate practically unaltered over long distances be- 
cause they are regenerated by the excitable membrane tis- 
sue, thus offering an effective mode of communication in 
the nervous system. It is this latter type of neuron that our 
paper will concentrate on. 

This brief phenomenological review of the basic struc- 
tural and functional characteristics of the “prototypical” 
neuron serves as the neurophysiological foundation of our 
analytical study in that it provides the guide for meaning- 
ful modeling assumptions and formulation of the associ- 
ated system problem. 

111. SIGNAL TRANSFORMATION I N  NEURAL UNITS 
The problem of signal transformation in a neural unit 

(neuron) is defined as the modeling study of a “black- 
box” system that transforms received input information 
into the composite intracellular potential (CIP) at the axon 
hillock, as discussed in the previous section. 

In general, a neuron receives input information through 
synaptic or electrical junctions (excitatory or inhibitory) 
at various sites of its dendrites and soma. These input sig- 
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nals are provided by other neurons (or external stimuli in 
the case of sensory receptors) and can be either GP’s or 
AP’s. The input signals are first transformed at the junc- 
tions, an operation which in the synaptic junctions in- 
volves mild low-pass filtering (time-constants of about 2- 
4 ms) and a sigmoid nonlinearity reflecting molecular 
transmitter-receptor interactions [5]. The resulting den- 
dritic potentials (DP) propagate along the dendritic 
branches and merge together in a nonlinear fashion due to 
saturation of sodium ion currents and the complex ge- 
ometry of the dendritic tree. The propagation of DP’s 
along a passive fiber follows Rall’s linear cable theory 
[ 131 and results in amplitude attenuation and spreading of 
the waveform with time (distance). Although the latter 
transformation is linear, this is not true if the ionic con- 
ductances of some dendritic fibers are (subcritically) volt- 
age dependent leading to nonelectrotonic conduction in 
dendrites, as suggested by Leibovic and Sabah [6] and 
observed experimentally by Llinas et al.  [7]. Further- 
more, the dynamic transformation of propagating DP’s 
and their convergence to the soma is complicated by the 
complex geometry of the dendritic tree and the variability 
in ionic species involved, membrane properties and junc- 
tion sites and types. The following general statement can 
be made with some degree of confidence: the overall dy- 
namic transformation of input signals into the CIP is non- 
linear and of a fairly broad bandwidth (up to a maximum 
of about 100 Hz). 

The generality of the above statement is useful in that 
it establishes the nonlinear and broad-band dynamic na- 
ture of the transformation, and points to the suitability of 
the nonparametric modeling approach to this problem. 
Consequently, the Volterra-Wiener modeling approach is 
selected to represent this transformation since it satisfies 
the stated requirements. This approach has been exten- 
sively used in studies of nonlinear neural systems in re- 
cent years (for partial review, see [8] and [ lo]). Accord- 
ing to this approach, the input-output relation of a broad 
class of nonlinear dynamic systems can be expressed as a 
functional series (Volterra series): 

m nm nm 

* X ( t  - p i )  . . * X ( t  - T r , )  d71 . - * d7,, ( 1 )  

where x ( t )  and U ( t )  are the input and output signals re- 
spectively, and { k ,  ( T ~ ,  * . - , T, , )  ] are the system kernels 
that characterize its nonlinear dynamics, i.e., they can be 
viewed as generalized nonlinear filters. An associated 
functional series (Wiener series) that is orthogonal for 
Gaussian white-noise inputs has been used extensively in 
identification studies of physiological systems [8], [ 101. 
In this paper, we are not concerned with the identification 
problem (although that would be important if experimen- 
tal data were analyzed), but we wish to explore modeling 
issues of the aforementioned transformation. To this pur- 
pose, we consider an alternative model formulation of the 
Volterra-Wiener class of systems known as the Wiener- 

Bose model [ 11. The Wiener-Bose model utilizes a com- 
plete set of orthogonal linear filters { L,, } and a static 
(zero-memory) nonlinearity ZMN to propose the general 
block-structured model shown in Fig. 1 that is equivalent 
to the functional series of (1) .  The orthogonality of the 
filters { L,, is essential for system identification pur- 
poses; however, a model having the structure shown in 
Fig. 1 remains valid, in general, for any complete (but 
not necessarily orthogonal) set of filters spanning the en- 
tire system dynamics. In practical terms, a set of linearly 
independent filters that captures the essential character- 
istics of the system dynamics is adequate. Based on this 
observation, we propose that the dynamic neural trans- 
formation be modeled by a finite set of filters that capture 
the important dynamic system characteristics followed by 
an appropriate static nonlinearity ZMN. These key filters 
will be termed “modes” of the neuron and their outputs 
{ v i }  will be termed “internal variables” (IV). To retain 
mathematical simplicity and physiological interpretabil- 
ity, the number of modes should be kept to the necessary 
minimum in each case. The form of the static nonlinearity 
must also be determined to complete the model. This for- 
malism can be easily extended to the multi-input case [9]. 

To illustrate the proposed model, let us consider some 
examples. A neural system that exhibits two distinct 
modes of dynamics: a (leaky) integrating mode and a 
(slow) differentiating mode, shown in Fig. 2 as impulse 
response functions ( m l ,  m 2 )  of the two filters ( L l ,  L 2 )  
corresponding to these modes where 

m 2 ( T )  = - ( T  - 10) exp [ - ( T  - 10)2/16] ( 3 )  
where the time unit is numerically set to one (dimension- 
less). Consider the static nonlinearity ZMN that has a sig- 
moid characteristic in terms of a linear combination of the 
two IV’S ( V I ,  q): 

(4 )  
1 

1 + cy exp (-PiuI - P2u2) 
U =  

where U is the output CIP. For 01 = 0.4, Pi = 0.2, Pz = 
0.4 the resulting (hyper) sigmoid surface U = U (  u I ,  
is shown in Fig. 3. The first- and second-order kernels of 
this nonlinear system are shown in Fig. 4, and they reflect 
the combined dynamics of the two modes m l  and m2 under 
the (hyper) sigmoid nonlinear transformation of (4). Ker- 
nels of this approximate form have been measured in ac- 
tual neural systems through white-noise stimulation and 
analysis. Therefore, our suggestion is that actual kernel 
measurements be used in each particular case to select the 
minimum number of necessary dynamic modes. If the 
modes are picked correctly, then the form of the static 
nonlinearity ZMN can be easily determined from white- 
noise experimental data owing to the ergodic properties 
of the stimulus. 

The problem of identifying the minimum number of re- 
quired neuron modes from actual input-output experi- 
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Fig. 3 .  The form of the static nonllnearity defined by (4) 

mental data can be rather formidable in practice. In the 
general case, a set of orthonormal modes (corresponding 
to the filter bank of Fig. 1) and the corresponding coeffi- 
cients can be obtained following the Wiener-Bose ap- 
proach when the input is Gaussian white noise [ l ] ,  (81. 

However, reducing this set of general modes to the min- 
imum necessary for a specific neuron is a task for which 
no general approach is currently available. Nonetheless, 
if we limit ourselves to measurements of the first two ker- 
nels (which is the usual practice in applications to date), 
then one such method can be devised by diagonalizing the 
(symmetric) matrix of the obtained expansion coefficients 
for the second-order kernel. Then inspection of the ab- 
solute values of the diagonal entries (i.e., eigenvalues of 
the original matrix) indicates the minimum number of re- 
quired modes (i.e., the most significant ones) and allows 
determination of these modes as the inner products of the 
corresponding eigenvectors with the original general 
modes. This approach is analogous to singular value de- 
composition in determining minimum order realizations 
of linear systems from noise-contaminated experimental 
data. The significant modes thus selected from the sec- 
ond-order kernel, along with their counterparts in the 
transformed first-order kernel representation, enter in the 
model as quadratic terms. An additional linear term may 
be selected that corresponds to the remaining significant 
terms of the first-order kernel representation. The com- 
plexity of this task is compounded by experimental limi- 
tations in applying and measuring the appropriate input- 
output signals (especially in the multi-inpdmulti-output 
case), as well as by the presence of data-contaminating 
noise. All these practical limitations point to the feasibil- 
ity of obtaining only rough (but hopefully adequate) ap- 
proximations of the proposed model in practice. 

The form of the static nonlinearity need not be limited 
to the one given by (4) and we expect a great variety de- 
pending on neuron characteristics. Even if we stay with 
the (hyper) sigmoid expression of (4), the exponent term 
may be a different function of q ,  v2. For instance, a neu- 
rophysiological phenomenon known as ''shunt inhibi- 
tion" may result in amplitude modulation of one mode by 
another, leading to bilinear terms in the exponent. In the 
previously discussed example of a (hyper) sigmoid ZMN, 
we have 

( 5 )  
1 

U' 
1 + CY exp (-PIU, - P2u2 + Y W 2 ) '  

The shape of this static nonlinearity is shown in Fig. 5 
for CY = 0.5, /3, = 0.5, p2 = 0.5, y = 0.1, exhibiting 
regions of mutual facilitation and occlusion. Another ex- 
ample could be a case of full-wave rectification of one 
mode or both modes giving rise to quadratic terms in the 
exponent of the (hyper) sigmoid (shown in Fig. 6). Full- 
wave rectification in the presented phenomenological 
context may arise from combined synaptic inputs by two 
other neurons that have previously applied half-wave rec- 
tification to their (same) input. We must emphasize that 
the form of ZMN is a matter of pure conjecture in these 
examples. 

IV. SIGNAL CODING BY NEURAL UNITS 
The signal coding problem by a neural unit (neuron) is 

defined as the process of generating a sequence of AP's, 
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Fig. 4. The first and second order kernels of the nonlinear system defined 
in the text. 

on the basis of the CIP and a threshold mechanism, that 
carries the desired information content. The biophysical 
mechanisms of the generation of AP’s have been exten- 
sively studied starting with the pivotal work of Hodgkin 
and Huxley [4]. Since the detailed biophysical issues in- 
volved are not critical for this paper, we borrow only those 
developed notions that are relevant in our systems for- 
mulation of the problem. In its simplest form, the AP gen- 
eration mechanism can be viewed as a threshold-trigger 
(TT) device that produces a spike (AP) whenever its input 
(the CIP) exceeds a certain threshold value. There is a 
“reset” mechanism in TT (analogous to a gas-tube cir- 
cuit) that returns the output to the resting level after each 
spike firing and prevents the generation of another spike 
for a short period of time following each firing (refractory 
period). There are dynamics involved in this process, but 

they are so fast relative to the previously discussed dy- 
namics that they can be ignored in first approximation. 

There are several important issues regarding modeling 
of the AP generation mechanism that will be left untreated 
in this paper. To name a few: the distinction between ab- 
solute and relative refractoriness (refractory dynamics), 
the experimentally observed characteristics of fatigue, ad- 
aptation and habituation, the spontaneous activity, and the 
stochastic threshold variations. These issues must and will 
be incorporated in this modeling framework in the future. 
At present, we limit ourselves to the simplified postulate 
of the TT and (by employing discrete-time representation 
of our signals to bypass the issue of exact AP shape and 
refractoriness) we focus on what can be learned from this 
simplified model in terms of coding of incoming neural 
information into a sequence of AP’s (spike train). 
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Fig. 5 .  The form of the static nonlinearity defined by ( S ) ,  exhibiting re- 
gions of facilitation and occlusion. 

STATIC NONLINEARITY SHOWIWC T Y O ~ M O D F  RECTlE1CATION 

( b )  
Fig. 6 .  The fomi of the static nonlincarity containing quadratic terms of 

(a) I ] ? ,  (b) I ) ,  and I ! ? :  in the exponent of the basic (hyper) sigmoid expres- 
sion (full-wave rectification characteristics). 

First, we discuss the effect of appending TT at the end 
of the model discussed in Section 111. In a recent paper 
regarding theoretical aspects of Wiener modeling of spike- 
output systems [ 1 I] we demonstrated that the addition of 
a TT operator at the end of the general Wiener model re- 
duces considerably the number of required Wiener kernels 
for the full representation of the system. This reduction is 
of critical importance for the system identification and 
modeling tasks, and it is especially dramatic when the 
nonlinearity ZMN is monotonic. To demonstrate this, 
consider a system with one mode L followed by a static 
nonlinearity ZMN and a threshold-trigger TT, as shown 
in Fig. 7(a). The cascade of ZMN and TT can be viewed 
as a single static nonlinearity NTT that produces a spike 
whenever its input U ( t )  attains values within specific 
ranges determined by the combination of ZMN and TT. 
For instance, if the characteristic of ZMN and the thresh- 
old value 8 of TT are as shown in Fig. 7(b) with a solid 
line, then the resulting characteristic of the composite 
static nonlinearity NTT is as shown in Fig. 7(c). This in- 
dicates that a third-order Wiener model [i .e. ,  model order 
equal to the number of intersections between threshold 
line andf(  U ) ]  would be sufficient in this case regardless 
of the degree of nonlinearity of the functionf( U ) .  A more 
dramatic example would be a threshold 8‘ (shown also in 
Fig. 7(b) with a dashed line) resulting in a single inter- 
section point at U = U ‘  and reducing the order of the re- 
quired Wiener model to one (NTT characteristic is shown 
in Fig. 7(c) with a dashed line). Computer simulations 
illustrating this point can be found in Marmarelis et al. 
11 11. 

According to Wiener’s theory, the general nonlinear 
system of the Wiener class (i.e., a system having finite 
output variance for Gaussian white-noise input) can be 
represented as in Fig. 1. If this general Wiener-Bose 
model is followed by a threshold-trigger TT (shown in 
Fig. 8) then we have the general model for Wiener sys- 
tems with spike outputs. The nonlinear characteristic of 
NTT will be, in general, an r-dimensional binary func- 
tion: 

y = l + l s n  2 2 g ( f ( ~ 1 ,  ~ 2 ,  * * * 9 U , )  - e }  ( 6 )  

where u = f ( u 1 ,  v2, * * , U , )  is the ZMN characteristic 
and “sgn” is the signum function. In other words, NTT 
will produce a spike whenever the combination of values 

These “trigger” values of ( u l ,  u2 ,  * * , U , )  define “trig- 
ger regions” that are demarcated by the solutions of the 
equation 

( V I ,  U 2 ,  * * * , U , )  is such t h a t f ( v l ,  u2 ,  * , U , )  1 e.  

f ( Z , l ,  . . . , U , )  - e = 0. ( 7 )  
The solutions of (7) are the “trigger lines” correspond- 

ing to the trigger points of the one-dimensional case shown 
in Fig. 7. In direct analogy with the one-dimensional case 
discussed before, the form of these trigger lines deter- 
mines the required (minimum) order of the Wiener model. 

In actual applications, these trigger regions can be de- 
termined experimentally by computing the values of ( u l ,  
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Fig. 7 .  (a) The L-ZMN-TT cascade model. (b) ZMN characteristic and 
threshold values 0 and 6” of TT, discussed in the text. (c) The resulting 
NTT characteristics for the two cases in (b). 
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Fig. 8. The general Wiener-Bose model followed by a threshold-trigger 
TT, and the equivalent NTT static nonlinearity. 

. . .  , U , )  for which a spike is observed in the output. The 
locus of these values will form an estimate of the trigger 
regions of the system. This is, of course, practically pos- 
sible only if a relatively small number of filters { L , )  can 
be found that span effectively the dynamics of the system 
under study. 

This general formulation of the modeling problem for 
spike-output systems has important implications in the 
study of netural systems. A spike-generating unit (neuron) 
is seen as a dynamic element that codes input information 
into a sequence of spikes where the exact timing of the 
spikes contains the transmitted information. This coding 
operation is defined by a finite number of dynamical 
modes [corresponding to the internal variables vi ( t ) ]  and 
by the boundary of the trigger regions of the unit (trigger 
lines). Therefore, each neural unit can be represented by 
the (necessary minimum) dynamical modes and the cor- 
responding trigger lines. This representation leads to a 
general and, at the same time, parsimonious description 
of the nonlinear dynamics of a neural unit. These units 
can be interconnected to form neural aggregates with spe- 
cifiable functional characteristics. These aggregates may 
be composed of classes of units, with each class charac- 
terized by a specific dynamical representation. The issue 
of whether the use of units with fairly complex properties 

offer an advantage over multiple units with simpler prop- 
erties in the context of a neural aggregate (or network) 
remains outstanding at this juncture. 

Let us now see how these ideas apply to the example 
discussed in the previous section. If the TT operator (with 
threshold 0 = 0.8) is appended to the (hyper) sigmoid 
ZMN shown in Fig. 3 ,  then the NTT characteristic shown 
in Fig. 9 results (i.e., the trigger line is a straight line). 
If the same is done for the ZMN characteristics shown in 
Fig. 6, then the NTT characteristics shown in Fig. 10 re- 
sult. Note that the same NTT characteristics will result 
for all ZMN surfaces that have the same intersection 
line(s) with the threshold plane, i .e. ,  they yield the same 
solution for (7). This clearly demonstrates that the de- 
tailed morphology of the ZMN surface in the subthresh- 
old or suprathreshold region has no bearing on the pattern 
of generated spikes. 

If the two dynamical modes of the system are the ones 
shown in Fig. 2, then the values of the internal variables 
v l  ( t )  and v2 ( t )  provide information through time about 
the integrated (magnitude) and differential (rate) charac- 
teristics of the input signal. The NTT Characteristics then 
indicate which combinations of magnitude and rate values 
of the input signal will lead to the generation of a spike 
by the neuron (trigger regions). Furthermore, subregions 
of these trigger regions can be monitored by “down- 
stream” postsynaptic neurons using the temporal pattern 
of the generated spike train and their own dynamic char- 
acteristics (modes and NTT). This “higher level” coding 
can provide the means for refined clustering of spike 
events that reflect specific “features” of the input signal. 
leading to specialized detection and classification of input 
information features and, eventually, to cognitive actions 
using these specialized features as “primitives. ” 

In full awareness that this hypothesis of neural infor- 
mation processing is not yet tested and is still in a seminal 
stage, we nevertheless propose it as a plausible theory that 
exhibits some attractive characteristics, e.g. ,  it incorpo- 
rates nonlinear dynamics and the signal modalities found 
in neural systems in a manner that is not inconsistent with 
current experimental evidence. 

We conclude with a simple example of signal coding 
based on the presented ideas. Consider a pulse input, 
shown in Fig. 11 along with the resulting internal vari- 
ables U ,  ( t )  and v2 ( t )  corresponding to the modes of Fig. 
2.  Application of a TT operator on v l  ( t ) ,  v2 ( t ) ,  - u2 ( t )  
and U : (  t )  separately yields the spike trains shown in Fig. 
12 (traces, 1, 2, 3 ,  and 4, respectively). These cases em- 
ulate the “on-sustained,’’ “on-transient,’’ “off-tran- 
sient,” and “on/off-transient” responses of neurons, re- 
spectively, that are often observed experimentally. They 
code an event of significant magnitude and its duration, 
the onset of an event, the offset of an event, and the onset 
and offset of an event, respectively. Application of TT 
(with appropriate threshold) on a linear combination of 
the internal variables [ v I  ( t )  + 2v2(  t ) ]  yields an “on- 
mixed” response shown in Fig. 13 along with the input 
pulse and the combined waveform of the internal varia- 
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THRESHOLOEO (HYPER)SICMOID STATIC NONLINEARITY (NTT) INPUT PULSE ( # l )  AND INTERNAL VARIABLES V1 (62) AND V2 (#3)  

Fig. 9. The NTT characteristic for the ZMN of Fig. 3. 
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THRESHOLDED STATIC NONLINEARITY SHOWING TWO-MODE RECTlilCATION 

(b) 
Fig. 10. The NTT characteristics for the ZMN's shown in Fig. 6 (displays 

(a) and (b), respectively). 
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Fig. 11. A pulse input (trace 1)  and the resulting internal variables U, ( t )  
(trace 2) and v , ( r )  (trace 3) ,  corresponding to the modes shown in Fig. 
2.  
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Fig. 12. Spike-train responses to the pulse input for four common types of 
neuronal responses: 1) on-sustained, 2) on-transient, 3) off-transient, 4) 
onloff-transient. 

bles (this case would correspond to using the NTT char- 
acteristic of Fig. 9). The spike output codes the onset of 
the stimulus (event) and its duration in the same time- 
record. The higher level neurons (postsynaptic) must 
"know" that this is an "on-mixed'' cell, otherwise they 
will mistakenly interpret the cell output as coding two dis- 
tinct events. This can also be accomplished by cross ex- 
amination of the outputs of several different type neurons 
receiving and coding the same input. To illustrate the idea 
of higher level decoding by monitoring different subre- 
gions of the NTT trigger regions for spike events (i.e., 
clustering of q, u2 values resulting in a spike), we con- 
sider the presented "on-mixed'' spike train of Fig. 13 and 
plot the values ( u l ,  v2) corresponding to an output spike 
on the (q, u2) plane. The result is shown in Fig. 14 where 
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INPUT PULSE (#l).INTERNAL VARIABLE (I/Z),ON-MIXED RESPONSE (#3) 
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Fig. 13. The pulse input (trace I ) ,  the combined internal variable (trace 
2)  and the "on-mixed" spike output (trace 3 )  (details in the text). 

CLUSTERING OF SPIKE EVENTS ON (V1 .V2) PLANE 
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Fig. 14. Combinations of ( I , , ,  I ' ~ )  values leading to spike generation for 
the example of Fig. 13. Two clusters of ( ill, 1 ' : )  trigger values appear. 

the abscissa is U ,  values and the ordinate zl2 values. The 
combinations of (U,, u 2 )  values that lead to spike gener- 
ation do cluster in two groups. The upper left cluster cor- 
responds to high zi2 values (coding significant positive rate 
of change in the input signal) and the lower right cluster 
corresponds to high 1 1 ,  values (coding significant magni- 
tude of the input signal). These two clusters could be de- 
lineated by higher level neurons with appropriate dynamic 
characteristics, as suggested before, leading to extraction 
of input features. Of course, this simple case would be 
hardly worth the effort ( i .e. ,  this particular task could be 
accomplished with much simpler procedures); however, 
this example illustrates the possibilities for higher level 
decoding of more complex input information. 

Signal reconstruction of the input pulse on the basis of 
the aforementioned spike outputs can be easily accom- 
plished through appropriate integration and linear com- 
bination of the resulting continuous-time signals (analog 
decoding). However, the importance of analog decoding 

at higher levels of the nervous system is debatable, with 
the odds favoring a form of discrete (or symbolic) decod- 
ing such as the one outlined heuristically before, utilizing 
feature extraction and construction of (pre-)cognitive 
primitives. 

V. CONCLUSIONS 
The issue of signal transformation and coding by neural 

units (neurons) was studied in the context of nonpara- 
metric nonlinear models and continuous-time (graded po- 
tentials) and spike-train (action potentials) signals. The 
postulated model is based on notions developed from ex- 
isting neurophysiological knowledge, and constitutes a 
reasonable compromise between mathematical complex- 
ity and neurophysiological relevance. The model utilizes 
a small number of "dynamical modes" (representing the 
important overall dynamic characteristics of the neuron) 
and a multidimensional static nonlinearity (representing 
the overall nonlinear characteristics of the neuron, includ- 
ing the threshold mechanism by which action potentials 
are generated). The immense variety of individual neuron 
characteristics (in terms of geometric, synaptic, and bio- 
physical characteristics) leads to a similar variety of dy- 
namical modes and static nonlinearities that may be ap- 
propriate in different cases. Nonetheless, the postulated 
model offers a common analytical (and simulation) frame- 
work that allows a unified approach to the problem of sig- 
nal transformation and coding by different types of neu- 
rons, and incorporates nonlinear dynamics and spike 
generation in a fairly general, yet parsimonious manner. 
A plausible theory of higher level coding was heuristi- 
cally outlined based on "modal mappings" associated 
with the proposed model and leading to clustering of spike 
events. 

The actual identification of the minimum number of re- 
quired modes for the respresentation of a neural unit re- 
mains a formidable task in practice. The complexity of 
this task is compounded by the presence of data-contam- 
inating noise and experimental limitations in applying and 
measuring the appropriate input-output signals. One pos- 
sible approach to this problem, based on measurements of 
the first two kernels, is briefly outlined in Section 111. 
However, the thrust of this paper is the proposed model- 
ing approach and the specifics of the associated identifi- 
cation problem are not adequately addressed herein. 

This paper was limited to neural units (neurons) with 
the rationale that accurate understanding of the functional 
properties of individual neurons will facilitate the study 
of neural aggregates and allow, ultimately, the under- 
standing of the functional organization of "integrated" 
neural systems of greater complexity. This transition is, 
of course, a rather formidable challenge and this paper 
represents only a very small step in a very long journey. 
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