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Modeling of Neural Systems
by Use of Neuronal Modes

Vasilis Z. Marmarelis and Melissa E. Orme

Abstract— A methodology for modeling spike-output neural
systems from input-output data is proposed, which makes use
of “neuronal modes” (NM) and “multi-input threshold” (MT)
operators. The modeling concept of NM’s was introduced in a
previously published paper [4] in order to provide concise and
general mathematical representations of the nonlinear dynamics
involved in signal transformation and coding by a class of neural
systems. This paper presents and demonstrates (with computer
simulations) a method by which the NM’s are determined using
the 1st- and 2nd-order kernel estimates of the system, obtained
from input-output data. The MT operator (i.e., a binary oper-
ator with multiple real-valued operands which are the outputs
of the NM’s) possesses an intrinsic refractory mechanism and
generates the sequence of output spikes. The spike-generating
characteristics of the MT operator are determined by the “trigger
regions” defined on the basis of data. This approach is offered as
a reasonable compromise between modeling complexity and pre-
diction accuracy, which may provide a common methodological
framework for modeling a certain class of neural systems.

I. INTRODUCTION

HE subject of mathematical modeling of neuronal func-

tion has been attracting increased attention as the quan-
titative means for understanding information processing and
coding in the nervous system. Modeling efforts are made
from the subcellular and cellular level to the integrated levels
of neuronal networks and behavioral neuroscience (see, for
instance, the classic textbook [1]). Specialized techniques
for neural modeling include parametric and nonparametric
methods, i.e., the use of differential or integral equations,
respectively (see, for instance, two research volumes [2], [3]
edited recently on these approaches). The great diversity of
modeling approaches is a natural consequence of the immense
variety of neural systems and the diverse requirements of
different applications. In this context, the approach presented
herein must be viewed as a modeling tool suitable only for
certain classes of problems (i.e., those that involve the non-
linear dynamic relation between a discernible and observable
stimulus signal and its corresponding spike-train response),
as specified in Appendix I and in [4]-[6]. Note that this
approach cannot be used to model the spontaneous activity
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of neurons or autonomous neural systems (e.g., pacemaker
neurons, chaotic or unforced oscillators, etc.) since those cases
lack an observable stimulus.

In a previously published paper [4], the modeling con-
cept of “neuronal modes” (NM) was introduced in order
to provide concise and general mathematical representations
of the nonlinear dynamics involved in signal transformation
and coding by certain neural systems (see Appendix I). This
modeling concept is based on the judicious selection of
the principal dynamic modes of a neural system to achieve
a reasonable balance between mathematical complexity and
neurophysiological relevance. The proposed modeling ap-
proach decomposes into two operational steps the nonlinear
dynamics involved in the transformation of the graded stimulus
or potential input signal into a sequence of output spikes.
Note that it may often be physiologically appropriate to
consider the graded input of the system as the output of a
compressive nonlinearity (receptor or post-synaptic potentials).
The first operational step involves the aforementioned NM’s
that perform all linear dynamic (filtering) operations on the
input signal. The second operational step employs a multi-
input threshold (MT) operator (i.e., a binary operator with
multiple real-valued operands which are the outputs of the
NM’s) to produce the sequence of output spikes. Note that
the MT includes a refractory mechanism which provides the
model with a refractory period in the generation of spikes. The
two operational steps involving NM’s and MT are depicted
in the block-structured model of Fig. 1. This model form
was developed on the basis of the general Volterra—Wiener
nonlinear system theory [6], [7], adapted to the case of spike-
output systems [5], and it yields concise representations of
the system dynamics when the number of NM’s suitable for
a specific neural system is small (for a brief overview, see
Appendix I).

The employed NM’s are properly defined filters which
capture the important dynamic characteristics of the system.
These dynamics reflect the integrated effect of all axodendritic
and axosomatic synaptic inputs (including conduction effects)
on the formation of the transmembrane potential at the axon
hillock preceding the generation of an action potential (or
transduction dynamics and conduction effects for a sensory
system). The employed MT represents all nonlinear charac-
teristics of the system, which incorporate any nonlinearities
involved in the creation of the aforementioned composite
potential at the axon hillock as well as the generation of
the action potential [4]. It is critical to note that the formal
decomposition of a nonlinear dynamic system into a linear
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Fig. 1. Block-structured model of neural system with A neuronal modes
which form a linear filter-bank representing the important dynamic character-
istics of the system. The multi-input threshold operator incorporates all system
nonlinearities and generates the output spikes (see Appendix I).

filter-bank (representing the dynamics) and a multi-input static
nonlinearity is valid for all systems of the Wiener class (see
Appendix I). The immense variety of neuronal characteristics
implies a commensurate variety of NM’s and MT’s appropriate
in each case satisfying the conditions outlined in Appendix I.

Consider, for instance, a neural system whose response
depends on the amplitude and the rate of change of the
stimulus signal. This can be modeled as a system with two
dynamic modes corresponding to amplification and differ-
entiation (over some finite bandwidth). Depending on the
relative importance of the two modes, the system becomes
more amplitude-sensitive or more rate-sensitive (e.g., tonic vs.
phasic muscle spindle sensory axons, or sustained vs. transient
retinal ganglion cells) and it can be concisely modeled by
use of two properly weighted modes, whose outputs may be
subject to nonlinear transformations prior to the generation of
spikes (itself a nonlinear operation). Both of these nonlinear
operations are incorporated in the MT. For instance, if the
system response (spike firing frequency) depends on the size
but not on the sign of the rate of stimulus change (i.e.,
full-wave rectification of the output of the differentiation
mode seen, for example, in the “on-off transient” class of
ganglion cells in the retina), then a simple MT can capture the
combined nonlinear effect of rectification and spike generation
[4]. Furthermore, this model can be estimated from input-
output data. A variety of functional characteristics can be
modeled in this framework, as long as the practical selection of
appropriate NM’s and MT’s from input-output data is possible.
This latter issue is the subject of this paper, which presents
a practical methodology for this purpose and demonstrates
its use by computer-simulated examples. Sections II and I
present procedures for the estimation of NM’s and MT’s
from input—output data, respectively. Section IV presents some
illustrative examples using computer simulations, and Section
V summarizes the main conclusions of this study.
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II. IDENTIFICATION OF NEURONAL MODES

The proposed approach is based on the Volterra—Wiener the-
ory of nonlinear system modeling and its various extensions of
the last 20 years. The fundamental mathematical background
concerning this paper is summarized in Appendix I. It has
been shown that the model of Fig. 1 can represent the input-
output relation of a broad class of spike-output systems [5],
and it may find useful application to those systems that process
information by use of a few principal dynamic modes [4]. This
general model can be extended to systems with multiple inputs
and multiple outputs (including spatio-temporal inputs/outputs
relevant to vision).

The key practical issue in developing the model of Fig.
1 is how to determine the minimum number of NM filters
required in a given application. We postulate that for many
neural systems, the prevalent dynamic characteristics can be
captured by a small number of such filters (principal dynamic
modes). The notion of principal modes has been widely used in
many fields of engineering and science. Consider, for instance,
a linear time-invariant system. When its impulse response
function is decomposed (expanded) on a general basis, then
a large number of components generally results. Nonetheless,
this system may be viewed as having only one mode (the
impulse response function) knowledge of which simplifies
immensely the system representation. This observation mo-
tivates the search for a small number of principal modes in
the case of nonlinear or spike-generating systems [4], [5].
The validity of this postulate in a given application can be
readily checked by the ability (or not) of a reduced model
representation containing only the principal modes to explain
the input-output data.

We seek to address the practical question of how to de-
termine the minimum number of modes in the context of
2nd-order Volterra—Wiener systems (see Appendices I and IT).
To this purpose, we follow a two-step approach based on a
kernel estimation technique that employs Laguerre expansions
and estimates the expansion coefficients via least-squares
fitting. The key aspects of this kernel estimation technique
are summarized in Appendix I. The advantages accrued by
the advent of this technique are: 1) it yields rather accurate
kernel estimates from short data-records, even in the presence
of significant data-contaminating noise; 2) it removes the strict
requirement of white-noise inputs (indispensable in the Wiener
approach previously used) so long as all significant terms
are included in the model; 3) kernel representation becomes
rather compact, while the computational requirements remain
modest. These advantages are all critical for the success-
ful application of the proposed modeling approach. Having
obtained the Laguerre coefficient estimates of the Ist- and
2nd-order kernels, we write the system output in a quadratic
form involving the (symmetric) coefficient matrix C defined
in Appendix II. Eigen-decomposition of this matrix allows the
selection of the most significant eigenvectors (corresponding to
the most significant eigenvalues) as the Laguerre coefficients
of the principal modes of the system {m;(n)} which are the
NM'’s involved in the model of Fig. 1. This procedure is
detailed in Appendix II.
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Motivated by practical considerations, we have limited the
search for possible NM’s to those residing in the 1st- and 2nd-
order kernels. Note, however, that this does not constrain the
order of the final model of the overall system. The procedure
outlined above is illustrated with computer simulated examples
in Section IV.

III. IDENTIFICATION OF THE MULTI-INPUT THRESHOLD

Assuming that the NM’s of a given system have been
determined, we turn to the identification of the multi-input
threshold- (MT) operator of the model in Fig. 1. This is a
binary operator (output 0 or 1) receiving K real-valued inputs
{uj(n)}(7 = 1,---,K) which are the outputs of the K
previously selected NM filters:

y(n) = Tui(n). - ug(n)] ()

where T[] represents the binary operator MT. In practice, (1)
will only hold approximately due to the modeling errors intro-
duced by the omission of the less significant eigenvalues of C
(discussed in Appendix II). If we assume that Eq. (1) is exact,
then we can define the “trigger regions” (TR) of the system
as the locus of points (uj,---,u}) in the K -dimensional
space that correspond to an output spike [4]. These TR’s can
be identified from input-output data by mapping the “trigger
points” (TP) (u],---,u%) in the K -dimensional space, as
demonstrated in Section IV. When sufficient data are available,
the TR’s of the system will be adequately filled by TP’s and,
thus, the operational characteristics of the MT operator will be
defined. If the expression in (1) is approximate, either because
the modes are poorly estimated or their number is inadequate,
then “blurring” of the boundaries of the TR’s may occur. These
two potential problems can be addressed by increasing the
length of the data-records or the number K of employed NM’s,
respectively (although, in the latter case, we inadvertedly
increase the dimensionality of the TR’s). The tradeoff between
accuracy and complexity will have to be determined by the
requirements of each particular application. Clearly, retaining
a small number of NM’s (up to 3) facilitates the visualization
of the TR’s of a system. On the other hand, increasing the
length of the data-records (if experimentally feasible) improves
estimation accuracy and adds minimal computational burden
to the identification task.

In closing this section, it is useful to draw the connection
between the output expressions of (1) and the Volterra ex-
pansion discussed in Appendix I. The Volterra expansion is an
analytic (power series) approximation of the non-analytic hard-
threshold operator T'. As discussed in previous publications
[4], [S], the two representations can be connected through
the application of a hard-threshold © upon the output of the
Volterra model ¥ = f(-). Then the TR’s are demarcated by
the equation:

f(’Ul.’UQ,"'Uj.”'):@. (2)

Upon selection of the K principal modes {u;}, the output of
the Volterra model can be written as

g(n) = Fluy, ug,---ug) + &(n) 3)
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Fig. 2. The two impulse response functions used in the simulation example
plotted over 50 lags: g; (solid line) yields a finite-bandwidth measure of
stimulus intensity, and g2 (dotted line) yields a finite-bandwidth measure of
rate of change in stimulus intensity.

where ¢(n) represents the aforementioned approximation error
which may blur the demarcation of the TR’s of the model.
In this case, the boundaries of the TR’s may not be sharply
defined as “trigger lines” but, instead, they may emerge as
“trigger zones” where probability of firing is between 0 and 1.

The evaluation of the TR’s was described above in a
graphical/geometric manner, but it may also be done ana-
lytically by least-squares fitting of a multinomial expression
of the estimated mode outputs {u;(n)} to the system output
y(n). This fitting requires simply linear regression (since
the multinomial expression is linear in the unknown coef-
ficients—see Appendices I and II) and yields an analytical
expression approximating F(-) in (3) as a multi-nomial of
specified degree. This degree ought to be specified in practice
after visual inspection of the graphical estimate of the TR’s
discussed above. The accuracy of the obtained TR’s may be
readily evaluated by the predictive ability of the resulting
model.

IV. COMPUTER SIMULATED EXAMPLES

In order to illustrate the ideas presented in the previous
sections and verify the efficacy of the proposed approach, we
simulate examples of systems having the output equation:

y(n) = Tloqvi(n) + azva(n) + Arof(n) + Bevi(n)] - (4)

where vy, vo are the convolutions of a Gaussian white noise
(GWN) input z(n) with the impulse response functions
g1(n), g2(n), respectively, shown in Fig. 2. Note that v;
provides a finite-bandwidth measure of stimulus intensity and
vy provides an estimate of the derivative of v;. The coefficients
(a1, ag, (1, B2) determine the relative importance of the two
modes and the effect of the quadratic nonlinearities. For
instance, a system that is more rate-sensitive (mode #2) than
intensity-sensitive (mode #1) will have large a, relative to a;,
and if the rate-sensitivity is independent of sign (i.e., increase
or decrease of the same magnitude yields the same effect)
then “full-wave rectification” of the rate-sensitive mode output
(v2) can be represented by a large coefficient (32 of the square
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Fig. 3. The exact Ist-order kernel ploited over 50 lags (top), and the exact
2nd-order kernel plotted over 50 lags in each dimension (bottom) for the
single-mode simulated system (see text). The minimum and maximum values
of the 2nd-order kemel graph are —0.0027 and 0.0111, respectively.

term v3. This model form can be extended to multiple modes
and higher degree of nonlinearities (although the proposed
mode estimation procedure is based only on the lst- and
2nd-order kernel estimates). Note that the operator T[] is a
hard-threshold nonlinearity that possesses a refractory period
of one discrete-time point in these simulations. The GWN
input data (4096 datapoints) and the resulting output spike-
train are used to estimate the 1st- and 2nd-order kernels of each
simulated system via the Laguerre expansion technique (LET)
discussed in Appendix 1. The obtained Laguerre coefficient
estimates are used to determine the principal dynamic modes
(neuronal modes) of each system, following the procedure
outlined in Appendix IL Finally, the “trigger regions” (TR)
of each system are estimated as outlined in Section III.

We begin by simulating a simple system without nonlinear-
ities prior to the operator T[], using the coefficient values:
a; =1, a3 = 2, 81 =0, B2 = 0. This represents a case of
linear formation of the composite potential at the axon hillock
which reduces to a single-mode system [4]. The exact 1st- and
2nd-order kernels of this system are shown in Fig. 3 (note that
high order kernels arise because of the threshold nonlinearity).
The obtained kernel estimates using LET (for L = 10 and
o = 0.4) are shown in Fig. 4 and exhibit good agreement
with their counterparts in Fig. 3, demonstrating the efficacy
of LET. The matrix C of the obtained Laguerre coefficient

Fig. 4. The lst-order (top) and 2nd-order (bottom) kernel estimates for the
single-mode system obtained by use of the Laguerre expansion technique
(LET). The minimum and maximum values of the 2nd-order kernel graph are
—0.0035 and 0.0118, respectively. Comparison with their exact counterparts,
shown in Fig. 3, demonstrates the efficacy of the LET in kernel estimation.

estimates (see Appendix II) is shown graphically in Fig. 5 in 3-
D perspective form. Note that a number of Laguerre functions
L = 10 is adequate in this case, even though the kernels are
extending over 50 time-lags (i.e., a traditional time-domain
based kernel estimation technique would have to evaluate
1326 distinct kernel values, as opposed to 55 distinct Laguerre
coefficients evaluated by LET), demonstrating the potential
compactness of the Laguerre expansion approach discussed
previously. Following the procedure outlined in Appendix II,
eigen-decomposition of this matrix C' yields only one principal
mode (i.e., it has only one significant eigenvalue with the
next largest eigenvalue being about one order of magnitude
smaller) shown in Fig. 6 (solid line) along with the 1st-order
kernel estimate (dotted line). Note the proximity of the two
waveforms, as anticipated by the underlying theory [5].
Since this system has a single mode, the corresponding MT
operator has a single input and its TR’s can be easily defined
by use of scalar thresholds estimated by the data. The TR
of this particular system is the range of mode output values
greater than a scalar threshold © = 0.12. The estimated mode
and threshold can be used to predict the system response to
any (arbitrary) stimulus by the use of the model of Fig. 1.
An illustration of this is given in Fig. 7, where the actual
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(shown in 3-D perspective form) for the single-mode system, incorporating
all estimation results of the O-th, lst- and 2nd-order kernels. Note that
L = 10 in this example and the values of the first row (or first column)
of this symmetric matrix are the Oth order term (first point) and the Laguerre
expansion coefficients of the Ist-order kernel estimate (subsequent 10 values).
The remaining (10 x 10) values of the matrix correspond to the 2nd-order
kernel estimate (see Appendix II). The minimum and maximum coefficient
values in this graph are —0.0429 and 0.0433, respectively.
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Fig. 6. The estimated “neuronal mode” for the single-mode system (solid
line) and the Ist-order kernel estimate of the same system (dotted line).
The remarkable agreement between the two curves confirms the theoretical
expectations and demonstrates the efficacy of the proposed kernel estimation
and mode estimation techniques.

response (trace 1) and the model prediction (trace 2) are
shown in perfect agreement over a segment of data generated
for a random stimulus (different from the one used for the
estimation of the model). This remarkable predictive ability of
the model corroborates the efficacy of the proposed approach.

The second example simulates a system performing ad-
ditional full-wave rectification of the signals v; and v, by
including the terms v% and v3 in the argument of operator
T[], ie., using the coefficients a; = 1,0 = 1,3 =
1, B2 = 1 in (4). This represents a case of nonlinear for-
mation of the composite potential at the axon hillock [4],
which exhibits an elliptical “trigger line” (TL). Application
of the proposed methodology to these data yields a new
set of 1st- and 2nd-order kernel estimates, shown in Fig. 8.
Comparison with the kernels of the previous system (Fig.
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Fig. 7. The spike-train response of the single-mode system (trace 1) and
the model prediction (trace 2) for a random stimulus different from the one
used for estimation of the model. The excellent agreement demonstrates the
predictive ability of the model.

4) indicates marked differences, especially in the 2nd-order
kernels, reflecting the different functional characteristics of the
systems. Eigen-decomposition of the corresponding Laguerre
coefficient matrix yields two neuronal modes (NM) shown
in Fig. 9, which correspond to the two most significant
eigenvalues (note that the next largest eigenvalue is about one
order of magnitude smaller). As anticipated by the theory (see
Appendix II), the estimated NM’s, m;(n) and mo(n), can be
closely approximated by linear combinations of the original
impulse response functions g;(n) and ga(n) as

mi(n) =~ 0.56g;(n) + 0.78g2(n)

ma(n) = 0.78¢1(n) — 0.69g2(n). (5)

The outputs u;(n) and us(n) of the two NM’s are computed
as convolutions of the input z(n) with m(n) and mz(n),
respectively. The “trigger points” (u}, u3) are mapped on the
(v1, u2) plane, as shown in Fig. 10. The emergence of a TL
is evident as the region outside the elliptical TL shown in
Fig. 10, an anticipated by the theory. It was also suggested in
Section III that an analytical expression for TR can be obtained
by least-squares fitting of a multinomial to the output data. In
this example, the multinomial is a binomial of second degree.
To confirm the predictive ability of the resulting model, we
show in Fig. 11 a segment of the system response along with
the model prediction. The agreement is very good, with the
model failing to predict only 5 out of the 46 output spikes.

An example of a system with hyperbolic TL is obtained
when ; and (3, have opposite signs. For instance, if a; =
1,0 =1, 5y = —1, 83 = 1 in (4), then the TR’ shown in
Fig. 12 results, which is demarcated by a two-sided hyperbolic
TL. The kemels and the NM’s of this system are, of course,
different from the previous examples. Thus different forms
of TR’s and NM’s will result from systems with different
nonlinearities prior to the application of the hard threshold.
This offers the versatility required for modeling diverse neural
systems.
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Let us consider an example where the nonlinearity is of

degree higher than second:
y(n) =Ty + vz —vf —vi+03 o3 — vl +0ui].  (6)
Two significant eigenvalues are identified in the matrix
of the Laguerre coefficients of this system as well. The
estimated TR of this system is shown in Fig. 13, clearly
demarcated by a TL that is of degree higher than second.
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Fig. 10. Plot of the “trigger points™ (asterisks) in the 2-D plane (u;. u3)
defined by the outputs of the two modes of the system with elliptical “trigger
line.” The latter can be also estimated analytically by least-squares fitting (see
text) and shown with dashed line. The “trigger region” is the area outside the
elliptical “trigger line,” as anticipated by the theory in this example.
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Fig. 11. The spike-train response of the two-mode system with elliptical
“trigger line” (trace 1) and the two-mode model prediction (trace 2) for a
random stimulus segment. The agreement is very good (with the model failing
to predict only 5 out of 46 output spikes in this segment) attesting to the
efficacy of the proposed modeling approach.

This example illustrates the fact that systems of arbitrary order
of nonlinearity may be modeled by this approach. Note that
a predictive model is obtained by this approach in all cases
where the NM’s and the TR’s can be reliably estimated by the
available input-output data.

Finally, the proposed method is not limited to the use of
GWN inputs, as long as the employed experimental input is
sufficiently “rich” in information content (i.e., broadband and
sustained). In order to demonstrate this point, we repeat the
simulation for a; = 1, as = 1, f; = 1. #» = 1 in (4) with a
nonwhite broad-band random input whose spectrum is shown
in Fig. 14. The obtained NM’s are shown in Fig. 15, exhibiting
good agreement with the previously estimated NM’s using
GWN input (Fig. 9). The resulting TR is shown in Fig. 16 and
compares well with its counterpart in Fig. 10, demonstrating
the efficacy of this approach when nonwhite (but broad-
band) inputs are used. These computer simulated examples
illustrate the use of the proposed approach for modeling spike-
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by the outputs of the two-modes of the simulated 4-th order system that
demonstrates the applicability of this approach to higher-order systems. The

4-th degree “trigger line” is demarcated by the intricate boundary of the
clusters of plotted points.

output systems. The application of this methodology to actual
experimental data from neural systems is currently in progress.

V. CONCLUSIONS

A methodology for modeling a class of spike-output neural
systems from input—output data is proposed, which makes use
of “neuronal modes” and “multi-input threshold” operators.
The method is applicable to systems with observable broad-
band and sustained input-output signals. The neuronal modes
are determined by eigen-decomposition of the coefficient ma-
trix obtained from the Laguerre expansions of the Ist- and
2nd-order kernels of the system. The characteristics of the
multi-input threshold (binary) operator are determined by the
“trigger regions” defined on the basis of the data. The method
may be applied to systems of arbitrary order of nonlinearity,
as long as a small number of neuronal modes is sufficient for
describing the essential system dynamics. Practical estimation
of the neuronal modes is possible when the data are collected

1155
200 3
1.80 %
1.60 4
2o
E e
1.20
z b
5 1.00 ?
4 ogop i
S i
E 0830 Aj
Jae0D 2
2200 1
o
N i T T T T MR —
8o 0.100 0.200 0320 0.400 0.500
NORMALIZED FREQUENDY [Hz]
Fig. 14. The spectrum of the non-white random input used in the simulations.
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Fig. 15. The estimated neuronal modes of the two-mode system with

elliptical “trigger line” when the non-white input is used. Comparison with
the estimates obtained for a white input (Fig. 9) supports the applicability of
this approach for nonwhite broadband inputs.

using broadband and sustained inputs (not necessarily white
noise, although the latter enhances the estimation process).
This approach is offered as a reasonable compromise between
modeling complexity and prediction accuracy. It is hoped
that it will provide a common methodological framework for
modeling the broad class of neural systems which satisfy
the conditions outlined in Appendix I. Note that autonomous
neural systems with no discernible or observable input cannot
be modeled by this approach.

APPENDIX 1

This Appendix summarizes the basic mathematical founda-
tion of this approach and the pivotal kernel estimation tech-
nique using Laguerre expansions. The general input—output
relation of a nonlinear time-invariant dynamic system (in
discrete time) is given by the Volterra series [6]:

y(n) =k, + Z ki(m)z(n —m) + Z Z ka(ms, ma)
m my m2

~z(n—my)z(n —mo) + - -

)
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Fig. 16. The “trigger region” depicted by the estimated model with nonwhite

input for the system with elliptical “trigger line.” Comparison with Fig. 10
demonstrates the efficacious use of nonwhite (broadband) inputs.

where z(n) is the input and y(n) the output of the system.
The series may extend to the appropriate (nonlinear) order for
each system. The Volterra kemels (k,, k1, k2,---) describe
the dynamics of the system at each order of nonlinearity. Note
that k, represents a constant (offset) value and k; represents
the Ist-order (linear) dynamics of the system. Kernels of
higher order represent system nonlinearities (of the respective
order) and they are symmetric functions (i.e., invariant under
permutation of their arguments). Expansion of the Volterra
kernels on the Laguerre basis {b;(m)} transforms (7) into the
multinomial power series expression:

y(n) =co+ »_ c1(j)v;(n)
+ Zz CQ(.jlv jZ)vjl(n)v]-z ("’) + e

J1 g2
:f(’l}l,’l)z,“',’l)]’,"') (8)
where
vij(n) = Z bj(m)x(n —m) )

and c¢1(j), c2(j1, j2), - -- represent the Laguerre expansion
coefficients of the 1st- and 2nd-order kernel, respectively. Note
that ¢, = k, and ¢2(Z, §) = ¢2(J, 7). The unknown expansion
coefficients can be estimated in practice by linear regression
of the output data y(n) on the terms of the multinomial
expansion of (8), as long as it is finite. The terms of the multi-
nomial expansion depend on the signals v;(n) given by (9)
as convolutions of the input data with the selected Laguerre
discrete-time functions

bym) = @21 - )12y (-1
k=0

. (’:)(Z)w-k(l —a)f (m20)10)

where « is the discrete-time Laguerre parameter (0 < v < 1)
which determines the rate of exponential asymptotic decline of
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these functions. The key variables {v;(n)} can be computed
more efficiently by use of the recursive relation:

v;(n) = Vavjn — 1)+ Vav_1(n) —vj_1(n = 1) (1)
initialized by
v,(n) = Vave(n — 1) + V1 — az(n).

These computations can be performed rather fast, for n =
1,---,Nand j = 0,1,---, L — 1; where L is the total
number of Laguerre functions used in the kernel expansion.
The choice of the Laguerre parameter « is rather critical in
achieving efficient kernel expansions (and, consequently, fast
and accurate kernel estimation) and its judicious selection is
based on the effective memory (size) of the system kernels
and L. The efficacy of this technique is demonstrated with
computer simulations in Section IV.

If “L” Laguerre functions are selected, then for a Q-th
order system the total number of unknown Laguerre coeffi-
cients that need to be estimated is (Q + L)!/(Q!L!), when
the kernel symmetries are taken into account. Due to the
difficulty of representation (multidimensional) of high-order
kernels, kemels only up to 3rd-order have been estimated
thus far. Clearly, the computational burden increases rapidly
with L and, therefore, this approach is more attractive when
the kernels can be represented by relatively few Laguerre
functions. The determination of the appropriate L for a given
system is based on successive trials with increasing L and
evaluation of the resulting reduction in mean-square error of
model prediction (i.e., the traditional approach to regression
model order determination). Extensive computer-simulated
examples have shown that this kernel estimation technique
offers significant advantages over previous ones, which are
summarized in the main text.

The Wiener approach to this problem entails the use of
a Gaussian white-noise (GWN) input z(n}), which tests the
system over all frequencies and amplitudes of interest. Fur-
thermore, Wiener orthogonalized the Volterra series (7) when
the input is GWN and suggested ways by which the unknown
kernels of the system can be estimated from input-output data
[6], [7] using co-variance estimates (the simplest implementa-
tion involves high-order cross-correlations). The resulting set
of Wiener kernels is, in general, distinct from the Volterra
kernels of a given system. A great deal of work has been
performed and published in the last 20 years on the theory and
application of the Wiener approach to physiological system
modeling (see, for instance, [3], [6]). Relevant to the objectives
of this paper, the following are the main Wiener contributions:
1) the proposition that a GWN input will test a nonlinear
system exhaustively over the entire frequency and amplitude
range, and thus extract all information necessary to identify
(model) the system; 2) the suggestion that a nonlinear system
of the Volterra—Wiener class can be modeled by a linear filter-
bank (with impulse response functions forming a complete
basis) feeding into a multi-input static nonlinearity as shown
in Fig. 17. The latter suggestion is corroborated by (8) and
(9). where f(-) represents the multi-input static nonlinearity
MN and {b;} represent the impulse response functions of the
linear filters {L,}, in Fig. 17.

(12)
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Fig. 17. Block-structured model of the general Wiener system followed
by a threshold-trigger operator (TT) that generates the output spikes. The
filter-bank (L. Ly.---) forms a complete basis of the system kemnels. The
multi-input static nonlinearity MN must be representable (or approximated)
by a multivariable power series.

Thus this modeling approach is applicable to all single-
valued systems with square-integrable (or square-summable
in discrete time) kernels and nonlinearities which can be
represented or approximated by multinomial power series ex-
pansions. All systems satisfying these weak conditions belong
to the Volterra-Wiener class and can be decomposed in the
model form of Fig. 17. This decomposition was adapted
to spike-output systems [5] by appending a theshold-trigger
operator TT to the static nonlinearity MN as depicted in Fig.
17. Note that the operator TT includes a refractory period.
It is evident that the class of systems representable by this
model form is extremely broad. In practical terms, however,
this model form is useful only when it is possible to reduce
the number of filters in the bank to a few “principal dynamic
modes,” which are the “neuronal modes” (NM) proposed in
this paper. Subsequently, the combined nonlinearities MN and
TT are replaced by the proposed multi-input threshold (MT)
operator receiving inputs from the outputs of the selected
neuronal modes NM shown in Fig. 1 (see main text).

APPENDIX 11

This Appendix outlines the procedure by which the principal
dynamic modes (neuronal modes) are determined from Ist-
and 2nd-order kernel estimates. Consider the Laguerre expan-
sion coefficients estimated for a 2nd-order Volterra model, as
described in Appendix 1. We form the following (symmetric)
coefficient-matrix C using the estimated coefficients: {¢;} and
{ca} of the Laguerre expansions of the Ist- and 2nd-order
kernels, respectively (c, is the zero-order constant term):

Co c(1)/2  «(2)/2 c1(L)/2
c1(1)/2 (1, 1) (1, 2) co(l. L)

C 61(2)/2 (52(_2. ].) (,’2(2‘ 2) ("2(2. L) (13)
a(L)/2 el 1) es(L.2) eo(L. L)

Note that for a 2nd-order system, the output y(n) can be
written as (superscript “T" denotes “transpose™):

y(n) = 27 (n)Cu(n) (14)
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where the vector:
vIn) =1 vi(n)va(n)

represents the outputs of the Laguerre filters at each time
n (augmented by a constant element). Consider the eigen-
decomposition of the symmetric matrix C using the matrix
M of its eigenvectors:

C=MT"AM (16)

where A is the diagonal matrix of its (distinct) eigenvalues
{A}G =0,1.--+, L). Then

y(n) = (Mo A[Mu(n)
uT (n)Au(n)

)\o,ug('ﬂ) + )\111,%(71,) + .+ /\L'U:%(TL)

Il

arn

where the elements {u;(n)} of the transformed vector u(n)
are linear combinations of the elements of the vector u(n), i.e.,
uj = pjo+ pvi(n) + -+ pipvp(n) (18)
where 1150 4¢j1 - - i45.1] is the j-th eigenvector I of C. Equa-
tion (17} indicates that the relative importance of u;(n) for the
system output y(n) is determined by the relative magnitude of
the corresponding eigenvalue A ;. Thus inspection of the rela-
tive magnitude (absolute value) of the eigenvalues of C allows
quantitative selection of the “principal modes” of the quadratic
form in (17). In essence, by selecting only those eigenvectors
of matrix C' which correspond to eigenvalues of significant
magnitude, we concentrate on those linear combinations of the
elements of vector »(n) which contribute most to the output
of y(n). Note that, if the eigenvalues of matrix C are not all
distinct, then cross-terms {u;u;} will appear in (17). In prac-
tice, the selection of the significant eigenvalues/eigenvectors
is based on criteria deemed suitable for each application by
the individual investigator(s). Naturally, signal-to-noise ratio
considerations and tradeoffs between accuracy and complexity
must be taken into account in exercising this judgment.
Having selected the K(K < L) “principal components”
{uj(n)}. we can reconstruct the K time-domain functions
{m;(n)} whose Laguerre expansion coefficients correspond
to the selected K eigenvectors {Ej} :

mj(n) = pjo+ ujibi(n) + - + pyLbr(n). (19)

These functions {m;(n)} are the selected “neuronal modes”
(NM) of the system, i.e. they are the impulse response func-
tions of the minimum number K of filters in Fig. 1.
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