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Experimental studies o f  certain sensory systems (e.g., vertebrate retinal cells and 
auditory fibers) have yielded qualitative evidence o f  the presence o f  nonlinear feed- 
back. However, no methods have been available to provide the tools f o r  quantitative 
analysis o f  this nonlinear feedback mechanism and subsequent modeling o f  the over- 
all dynamics o f  these sensory systems. Recent results offer the analytical means to re- 
late Wiener kernel measurements with corresponding nonlinear feedback models and, 
thus, the ability to model the overall dynamics o f  such sensory systems. Furthermore, 
our analytical results offer an explanation fo r  experimentally observed changes in the 
waveform o f  Wiener kernel estimates obtained fo r  different white-noise input mean 
and~or power levels. 
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I N T R O D U C T I O N  

The use o f  the Wiener  approach  in model ing studies o f  nonl inear  physiological  sys- 
tems has been expanding in recent years (see, for instance, the edi ted volumes [11,13]), 
because it does not  require pr ior  knowledge  o f  the internal  s t ructure  or  funct ional  or- 
gan iza t ion  o f  the system and yields mode l s  tha t  are  true to  the da t a  (i .e. ,  they  do not  
reflect subjective biases o f  the investigator).  The pract ical  l imitat ions o f  this app roach  
have concerned  pr imar i ly  the requ i rement  o f  whi te-noise  test inputs  and  the compu-  
ta t ional  burden  associated with the es t imat ion o f  h igh-order  Wiener  kernels (9). These 
l imi ta t ions  have been re laxed by recent  f indings  ( for  instance,  the  exact  o r t h o g o n a l -  
izat ion me thod  of  Korenberg  [7]), even though the compu ta t i ona l  ef for t  required for  
the es t imat ion  o f  h igher -order  (>_3) kernels  remains  beyond  the o r d i n a r y  compu t ing  
means  o f  mos t  invest igators .  Fu r the rmore ,  the represen ta t ion  o f  higher  than  second 
order  kernels is a daunt ing  pract ical  p rob lem.  Thus,  the app l ica t ion  o f  this a p p r o a c h  
has been prac t ica l ly  l imited to s econd-o rde r  Wiene r  models .  
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A more critical problem exists in interpreting the estimated nonlinear Wiener mod- 
els in a meaningful physiological context. Efforts in this regard have concentrated on 
the development of relatively simple block-structured models comprised of  dynamic 
linear (L) and static nonlinear (N) components. The most successful block-structured 
models to date have been cascades of the form L-N, N-L, and L-N-L, although no- 
table attempts have been made in developing models with several parallel channels of 
such cascades (6,19). Some examples of these efforts are contained in recently edited 
volumes (11,13), a special issue of the Annals  (12), and the first book on this subject 
(9). Although many investigators have made significant contributions in the study of 
simple cascade models, Korenberg's pioneering paper (5) has been pivotal on this sub- 
ject. The advantage offered by these block-structured models is compactness, greater 
interpretability, and the ability to estimate strong nonlinearities (represented by the 
N components) without resorting to estimation of high-order kernels. 

One important class of  block-structured models that has not been effectively re- 
lated to Wiener analysis of  experimental data is the one containing nonlinear feed- 
back components. The reason has been the apparent analytical complexity of this 
class of systems. However, the significance of  nonlinear feedback mechanisms for the 
proper function of physiological systems is unquestionable and has provided the mo- 
tivation for the present study. Although evidence of  nonlinear feedback is found in 
many physiological systems, our study is concentrated on sensory systems (e.g., vi- 
sual and auditory), where Wiener kernel measurements have been rather extensive and 
nonlinear feedback is thought to play an important role. 

For instance, it has been observed that several sensory systems undergo a gradual 
transition from an overdamped to an underdamped dynamic mode (e.g., retinal hor- 
izontal cells [10,17]), or the resonance frequency of  a band-pass characteristic shifts 
downward (e.g., auditory nerve fibers [15]) when the power or the mean level of the 
input signal (stimulus) increases. Simple cascade models of  the aforementioned types 
cannot explain the observed dependence of  kernel waveform on stimulus mean and 
power level, since they can only account for (nonlinear) scaling changes of the ker- 
nels. However, a model that employs nonlinear feedback can account for such 
changes in kernel waveform under various experimental stimulus conditions. 

This article addresses the issue of Wiener analysis of a class of nonlinear feedback 
systems and presents the key analytical expressions that may help interpret Wiener 
kernel measurements in the aforementioned block-structured modeling context. The 
guide to this study is provided by the theoretical Volterra-Wiener analysis of  a class 
of  nonlinear differential equations that are equivalent representations of a class of 
nonlinear feedback systems (14). Explicit mathematical expressions have been derived 
that relate Wiener kernel measurements to the characteristics of  the feedback system 
and the stimulus parameters. Computer simulations have been used to illustrate our 
theoretical findings and demonstrate analogies in the observed behavior of  this class 
of nonlinear feedback systems with experimental observations from the visual and au- 
ditory system that have been previously reported (for instance, [10,15,17]). 

VOLTERRA-WIENER ANALYSIS OF A CLASS OF NONLINEAR 
FEEDBACK SYSTEMS 

We consider a nonlinear ordinary differential equation of  the form: 

L ( D ) y  + f ( y ,  Dy  . . . . .  Dry)  = M ( D ) x  (1) 
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where D is the differential operator d (.)/dt; x (t) and y ( t)  are the system input and 
output, respectively; f ( . )  is a continuous function of its arguments; and L(D),  M(D)  
are polynomials in D (L is of higher degree than r, and Mis  of lower degree than L). 
This equation is equivalent to the block-structured system of  Fig. 1. If the function 
f ( . )  is nonlinear, then the system of  Fig. 1 is a nonlinear (negative) feedback system 
with a linear forward subsystem and a linear subsystem in precascade. 

The study of  this class of nonlinear feedback systems can be cast in the context of  
Volterra-Wiener expansions of nonlinear differential equations. To demonstrate this, 
we consider the case where the function f ( . )  has only two arguments (y and Dy, the 
output and its derivative) and is represented by a power series expansion 

/ = 0  1 = 0  
i+j~2 

(2) 

where the coefficients of  the nonlinear terms are of small magnitude; that is, I Ci, j] ~ 
<< 1 for all i and j ,  and e represents the upper bound of the coefficients magnitude. 

Note that the polynomial L(D) is assumed of  degree higher than first (i.e., it involves 
at least the second derivative of  y) and the polynomial M(D)  is of lower degree than 
L(D) by at least two degrees. The nonlinear terms are of  degree two and higher since 
linear terms may be absorbed into L(D),  and must be considered as terms of  a Tay- 
lor (or Weierstrass) expansion of an analytic (or continuous) function of y and its de- 
rivative. The constraint on the magnitude of  the coefficients cij is necessary for 
simplifying the analytical derivations and corresponds in practice to the requirement 
of stable behavior of the nonlinear feedback system. 

Volterra Series Expansion 

For the region of stable solutions of Eq. 1, there exists a Volterra functional ex- 
pansion (1,2,3,16,20): 

 j0- f0 y ( t )  . . . .  k.(Tl . . . . .  r . ) x ( t - -  T 1 ) ' ' ' x ( t - -  ~.)d':l '" "dv. 
n = l  

(3) 

which represents the system output in terms of a series of  multiple convolution inte- 
grals of  the input. The kernel functions { k.  } characterize the dynamics of the non- 
linear system and are called the Volterra kernels of the system. They are symmetric 

x _1 Y 

I ( ' )  

FIGURE 1. Block-structured model of nonlinear feedback system described by the nonlinear differ- 
ential equation, Eq. 1. 
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functions of their arguments, that is, attain the same value for all permutations of 
given (ri . . . . .  rn) values. 

A method of generalized harmonic balance can be used to derive analytically the 
Volterra kernels that correspond to the system described by Eqs. 1 and 2. This method 
is based on ideas found in (1,3,4,16) and has been detailed in (14). According to this 
method, the m th order Volterra kernel can be evaluated in the m-dimensional Laplace 
domain by considering generalized harmonic inputs: 

Xm( t  ) = eSl t + . . .  + e smt (4) 

where si are distinct complex (Laplace) variables. Substitution of  the input Xm (t)  
into Eq. 3 results in the output expression 

~  ym( t )  = ~ "'" e (sJ,+'''+s~.)t 
n = l  j l = l  jn=l 

xf . . . fk . (r ,  . . . . .  r.)e-Sa, TM . . . . .  sjnr"dr,...drn (5) 

oo 

= ~ k "'" k e(SJ'+'"+sJ")tK,(si, . . . . .  sj,) 
n = l  j l = l  jn=l 

and its r th  derivative 

oo 

O r y m ( t )  = ~]* k " '"  k (SJl + " '"  + Sj .)re(si '+'"+sJ"' tKn(sJ,  . . . . .  Sj.) 
n = l  j l = l  jn=l 

(6) 

where K,  is the n-dimensional Laplace transform of  the kernel k , .  
Note that the output terms that contain the complex exponential with all distinct 

complex frequencies of the input (i.e., terms of  the form e (sl+'' '+sm)t) are terms as- 
sociated with the mth  order kernel. 

Substitution of the output expression and its derivatives given by Eqs. 5 and 6 into 
Eq. 1 yields an expression that can be used for the evaluation of  the mth order ker- 
nel Km (Sl . . . . .  Sm) on the basis of  harmonic balance, that is, by selecting only those 
terms in the equation that contain the complex exponential e ( s ' +  +Sm)t and must 
balance out. Thus, the harmonic balance approach yields analytical expressions of the 
Volterra kernels (in ascending order) that depend on the form and parameters of the 
differential equation. 

This procedure has been outlined in detail (14) and yields the following results. The 
first-order Volterra kernel is evaluated for m -- 1: 

M(Sl) 
K1 (Sl) - - -  (7) 

L(SI) 

Note that the nonlinear terms in Eq. 1 do not contribute to K1 (i.e., the first-order 
Volterra kernel of the system represents strictly the linear portion of the nonlinear dif- 
ferential equation, as expected). 



Wiener Analysis o f  Nonlinear Feedback 349 

The second-order kernel is evaluated for m = 2: 

K2(S1,$2) = --[C2, 0 "~ CI, 1 - -  
(Sl + S2) 

"[- C0,2S 1S21 KI (sl )Kl ( s 2 ) / L ( s  I -~- s2) �9 ( 8 )  

Continuing on with m = 3, we obtain an expression for the third-order kernel when 
terms of order e 2 or higher are neglected (since we have assumed that I ci, j l <- c << 1) : 

(SlS 2 -I- S2S 3 -{- S3Sl) (SI "1- S2 "1- S3) "{'- CI,2 
K3(SI,S2,S3) = -- C3,0 "4- C2,1 3 3 

(9) ] 
"Jr- Co,3SISzS3JKI ( s 1 ) K  1 ( s 2 ) K  1 ( s 3 ) / L ( s  I -b s 2 -b s3) i 

Generalizing this analysis and observing that for the m th order harmonic balance 
of terms containing e (s~+ .+Sm)t the only non-negligible terms (i.e., of  order e) will 
be contributed by the expressions for Ym ( t ), Drym ( t ), and y ~  ( t )  [Dy m ( t )] j for i + 
j = m ,  we have (for m > 1): 

( ( m -  n)!n! 
Km(S1 . . . . .  Sm) ~ - ~  ~'~ 

,=o m! 
Cm-n, nRm,n(S1 . . . . .  Sm) 1 

X K I ( S 1 ) " "  "KI(Sm) /L(s1  "4" "'" + Sm) 

(10) 

where Rm,n ( S l  . . . . .  S m) denotes the sum of all distinct products (sjl Sj2"  ~ " S j n )  that can 
be formed with combinations of the indices (Jl ,Jz . . . . .  Jn) from the set (1,2 . . . . .  m). 
Note that Rm, o = 1 by definition. Equation 10, in combination with Eq. 7, yields the 
approximate general expression for the Volterra kernels of  this class of nonlinear sys- 
tems, under the stated assumption of  small-magnitude coefficients for the nonlinear 
terms of Eq. 1. 

Wiener  Series Expans ion  

Identification and modeling of a given "black-box" nonlinear system require es- 
timation of  the kernels from input-output data. This task is complicated by the fact 
that the Volterra functional terms are, in general, coupled for a given input, and the 
problem requires solving a complicated set of  simultaneous equations. To solve this 
estimation problem, Wiener proposed the orthogonalization of the Volterra functional 
expansion for a Gaussian white noise (GWN) input (21). This leads to decoupling of  
the function'al terms (of the Wiener orthogonal expansion) and allows the estimation 
of  the (Wiener) kernels one at a time. 

This approach has been studied extensively in the last 30 years, and the reader is 
referred to the original Wiener monograph (21) and recent books on the subject 
(9,11,16,18) for details. A summary, necessary for the developments of  this article, 
follows. 

The Wiener orthogonal expansion is: 

~ j j  ~ t t y ( t )  = G n [ h n , x ( t  ) , t  <-t] (11) 
n=O 
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where the n th  order Wiener functional 
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[n/2] (__l)mn!pm 
G . [ h . ; x ( t ' ) , t "  _< t] = .--~o= m=o ~] (n - - - ~ 2 "  

yo~ x " ' "  h , ( r t  . . . . .  " r n _ 2 m , O i , 6 1  . . . . .  t T m , O m )  (12) 

x x ( t  - r l  ) "  �9 �9 x ( t  - r n _ 2 m  ) d r 1  �9 �9 �9 d ' r n _ 2 m  d O l  �9 �9 �9 d o  m 

contains the nth order Wiener kernel h, and the power level P of the GWN input. 
The most widely used method for the estimation of  Wiener kernels has been the 

cross-correlation technique (8), according to which the nth order Wiener kernel can 
be estimated from high-order input-output cross-correlations as 

1 
h , ( r l "  . r , )  - n ! P  ~ E [ y ~ ( t ) x ( t  - r l ) - "  . x ( t  - r,)] (13) 

where y .  ( t)  is the n th order output residual: 

n - I  

y n ( t )  = y ( t ) -  ~] G m [ h m ; x ( t ' , t '  <- t ) ]  (14) 
m=O 

As indicated by Eqs. 13 and 14, the kernels are estimated successively, in ascend- 
ing order. In practice the ensemble-average of Eq. 13 is evaluated as a time-average 
over the experimental input-output record under the assumption of  system station- 
arity. Issues of actual implementation and estimation accuracy in this approach have 
been addressed extensively (9). 

The cross-correlation technique requires fairly long data records to yield kernel es- 
timates of  sufficient accuracy. The exact orthogonalization technique proposed re- 
cently by Korenberg (6,7) reduces significantly these requirements and leads to 
estimates of  higher accuracy. It also allows certain deviations from whiteness in the 
experimental input. Likewise, we have recently implemented a method utilizing La- 
guerre expansions of  the kernels and least-squares fitting to obtain improved kernel 
estimates under the same conditions (i.e., short data records and deviations from 
whiteness). Thus, these recent techniques offer significantly improved estimation tools 
for kernels up to second order, relative to the traditional cross-correlation technique. 

The Wiener kernels are, in general, different from the Volterra kernels of a given 
system (for which both expansions exist). The n th  order Wiener kernel can be ex- 
pressed in terms of the Volterra kernels of the same and higher order as (9): 

oo 
( n  + 2 m ) ! P  m 

h , ( r l  . . . . .  r , )  = 
m = 0  n ! m ! 2  m 

Jof X " ' "  k n + 2 m ( ' r l  . . . . .  Tn,ffl ,O'l . . . . .  Om,Om) d o  I . . . d a  m . 

( 1 5 )  



Wiener Analysis of Nonlinear Feedback 351 

The relation between Volterra and Wiener kernels in the frequency domain is 

H , ( jwl  . . . . .  j c%)=  ~ ( n +  2m)!pm f _ ,  f 
m=O n!m!2m(2~r) m o~ " ' "  Kn+2m 

(16) 

• (jwl . . . . .  j w n , j U l , - - j U l  . . . . .  jUm,  -- jura) d u l ' ' "  dum. 

For the specific class of systems described by Eq. 1, the Volterra kernels of order 
higher than first have the approximate form given by Eq. 10. Therefore, combining 
Eq. 10 with Eq. 15 we can obtain, in first approximation, the general expressions for 
the high-order Wiener kernels of this class of systems. 

The general expression for the first-order Wiener kernel is: 

oo (2m + 1) !pm 
Hi(jr-o) =Kl(j*0) + ~ m!2m(27r)m 

m = l  

f~  • . . .  K2m+l(j~,jUl,-ju I . . . . .  jUm,-jum)dUl.. .dum 
o o  

(17) 

which indicates that H1 (jw) is a power series in P and depends on all odd-order 
Volterra kernels of the system. Note that HI (jw) coincides with KI (jo~) (which rep- 
resents the linear portion of the differential equation) for P = 0, as expected. Sub- 
stituting Kzm+l ( ) from the general expression of Eq. 10, we obtain the expression of 
Hi (jco) for the considered class of systems: 

~ 2 m + l  ( 2 m _ ~ . ~ l ) ! ] ~ ! ( e ) m  
gl(jco) =Kl(j~o) Kl(j~o) ~ ~_j m! ~ Cam+l . . . .  

L(j~o) m = l  n = 0  

f~ f R (j j j X " ' "  2 m + l , n  co, jUl , - - jUl  . . . . .  1Xm,-- llm) (18) 

x IK1 (ul)-  �9 -K1 ( b / m ) l  2 dUl"" d u m  �9 

Inspection o f the function R2m+ 1, n (j~o, jul, - ju  1 . . . . .  j l lm,  - - ju  m ), as defined follow- 
ing Eq. 10, indicates that its values for n even do not depend on w, whereas its values 
for n odd depend linearly on (j~0). This leads to the following simplified expression: 

H1 (jco) = Kl (j~o) KiL(j~o)(Jco) ~==l (P/2)mmI 

X ~ [(2m - 2l + 1)! (2l)!C2m_21+1,2 I 
/ = 0  

(19) 

+ (jco)(2m - 2/) ! (2l + 1) !C2m_21,21+1] Q m , t  



352 V.Z. Marmarelis 

where 

l f_=...fRm,,(u ~ . . . . .  u Z ) [ K l ( U l ) . . . K t ( U m ) l Z d U l . . . d U m  . (20) Qm, I -  ( 2 r r ) m  

Considering the definition of Rm,h w e  see that the constants Qmd depend on the 
Euclidian norms of  Ig~ (u)l and l uK~ (u)].  For these quantities to be finite, the de- 
gree of  the polynomial L(D) in Eq. 1 must be at least two degrees higher than the 
polynomial M(D).  Thus, Eq. 19 can be written as 

H 1 ( jr  = K l ( j co)  
KI (joo) 

L(flo) 
- -  [A(P)  +jwB(P)] 

= K' (Jw) [ 1 -  A ( P) + j~ ( P) 

(21) 

where A (P) and B(P) are power series in P with coefficients dependent on I Qm,/} 
and {cidJ for (i + j )  o d d - t h a t  is, i odd a n d j  even for A(P) ,  and i even a n d j  odd 
for B(P) coefficients. Equation 21 indicates that Hi ( j~)  is affected by the nonlin- 
ear terms of Eq. 1 for which (i + j )  is odd and depends on the power level P of the 
GWN input. This explains why first-order Wiener kernel measurements of  this class 
of  systems change in waveform as the GWN input power level P changes. 

THE CASE OF STATIC NONLINEAR FEEDBACK 

A special case of  considerable practical interest is when the nonlinearity involves 
only the output variable, y, and not its derivatives, that is, 

L(D)y  + e f (y)  = M(D)x  (22) 

where l el << 1. If the function f (  ) is analytic or Can be approximated to an arbitrary 
degree of  accuracy by a power series (note that the linear term is excluded since it can 
be absorbed into L), 

f (Y )  = k ~ n (23) 
n=2 

then the resulting Volterra kernels are 

M(s)  
K I ( S  ) - -  

L(s) 

K,(sl  . . . . .  s~) = --eot~Kl ( s l ) ' . .  KI (s , ) /L(sl  + . . .  + s,) 

where terms of  order E 2 or higher have been considered negligible. 

(24) 

(25) 
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The first-order Wiener kernel in this case is (cf. Eq. 17) 

e k (2m + 1)! [PK~ m ) 
H , ( j w ) = K , ( j ~ ) I  L()co) m = l  m! ~kT] O/2m+lj 

(26) 

where 

1 iKl(U)12du 
K= 27r o~ (27) 

and the second-order Wiener kernel is 

H2(J~l,JW2) = --~ L ( j ~ l  +joo2) m=O m!2 Ot2m+2 

KI (joal )Kl (jo)2) 
= --e C2(P) . 

k( jWl  + jo~2) 

(28) 

We observe that, as the input power level varies, the waveform of the first-order 
Wiener kernel changes but the second-order Wiener kernel remains unchanged in 
shape and changes only in scale. Note that the functions C~ (P) and C2(P) are 
power series (or polynomials) in (Pc) and characteristic of the system nonlinearities; 
furthermore, the Wiener kernels approach their Volterra counterparts as the input 
power level diminishes (as expected). 

These results indicate that, for a system with linear forward and weak nonlinear 
feedback (i.e., l e~,l << 1), the first-order Wiener kernel in the time domain will be 

r 

hi ( r )  = k l ( 7 - ) - e C l ( P )  k l ( r - k ) g ( k ) d k  (29) 

and the second-order Wiener kernel will be 

min(r1,7"2) 

h 2 ( 7 - 1 , 7 2 )  = -eC2(P) kl (7"1 - -  k ) k l  (7"2 - X)g(k) d X  (30) 

where g(),) is the inverse Fourier transform of 1/L(jco). 

EFFECT OF G W N  I N P U T  M E A N  LEVEL 

A companion issue to that of changing input power level is the effect of changing 
mean level of the experimental GWN input. This is a rather common situation in ex- 
perimental investigations of physiological systems, whereby different mean levels are 
used for the experimental input (with white-noise perturbations superimposed on 
them) to explore different ranges of the system function (17). The resulting kernels 
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for each different mean level of  the input will vary, in general, for a nonlinear sys- 
tem. To reconcile these different measurements, we can use a reference mean level go 
and refer to its corresponding kernels {k ~ the kernels {kff} obtained f rom different 
mean levels/z, according to the relation 

(n + I)! 
k~(r l ,  . . . .  r,,) = z.a (~ - ~o) ~ 

l=o n!l! 

Iof X "'" k~ . . . . .  T n , a l  . . . . .  at) d a l "  "dal �9 

(31) 

The correspondence with the Wiener kernel measurements is given by the relation 

hn~(7-,,., rn) ~ ~ ( n W 2 m + l "  ( P )  m fo~ f 
� 9  = . . . .  kn+2m+l m=O /=0 n!m!l!  (lz tZo) t o 

X (7" 1 . . . . .  Tn, ~k l ,k  I . . . . .  R m , R m , f f  I . . . . .  a l )  (32) 

x dR1" �9 "dRm do1. . .dot  

and in the frequency domain 

~ ]  ~ ]  I ( ~ _ ~ ) m  foo f p. �9 H.(~ol . . . . .  ~%) (n + 2m + l) P 
~.  . . . .  k'~.n+2m+l m=O l=O n!m!l!  (g /Zo)t - ~  o 

X (oJ 1 . . . . .  (..on, U l , - - U  1 . . . . .  U r n , - - b l m , O  . . . . .  O)  (33) 

X dul" �9 �9 dum �9 

The first-order Wiener kernel for the class o f  systems with static nonlinear feed- 
back, discussed earlier, is given in terms of  the reference Volterra kernels (when 
#o = O) by the expression 

fO 
T 

h~'(r) = k l ( Z ) - e  g ( R ) k l ( r - k ) d X  

where 

• [ ~] ~-] (2m+l+l)!(PK)m 1 
m=O 1=0 m!l! - -  ( # 3 " ) l O L 2 m + l + l  

m+l>_ 1 

(34) 

fO ~ 
3' = kl (R) dR (35) 

and all other parameters and functions are as defined before (k 1 is the zero-mean in- 
put first-order Volterra reference kernel). Note that the first-order Wiener kernel for 
g r 0 is also affected by the even-order terms of  the nonlinearity, unlike the case of  
/z -- 0 where it is affected only by the odd-order  terms of the nonlinearity. 
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In the following section, we use computer  simulations to demonstrate  the effect 
of  changing input power level and /o r  mean level on the waveform of  the first-order 
Wiener kernel, and draw the analogy with changes observed in the first-order Wie- 
ner kernels of  some sensory systems when the G W N  input power level and /o r  mean 
level is varied experimentally. 

C O M P U T E R  SIMULATIONS OF SYSTEMS W I T H  STATIC 
NONLINEAR FEEDBACK 

We demonstrate the theoretical results obtained in the previous sections by simu- 
lating systems with static nonlinear feedback and observing the effects of  various non- 
linearities, input power levels, and input mean levels on the estimated Wiener kernels. 

Cubic Feedback Systems 

First, we consider a system with a low-pass forward linear subsystem (L) and a cu- 
bic negative feedback ( f =  cy 3) as shown in Fig. 1 (for M =  1). For le] << 1, the 
first-order Wiener kernel is (cf. Eq. 29 and note that g =- kl in this case) 

f0 h i ( r )  = kl(7") - 3 e P r  k l ( X ) k l ( r - X ) d X  (36) 

where k 1 (7") is the impulse response function of the low-pass linear forward subsys- 
tem (as well as the first-order Volterra kernel of  the overall system) shown in Fig. 2. 
For a zero-mean GWN input with power levels of  P = 1, 2, 4 and cubic feedback co- 
efficient c = 0.01, we compute the first-order Wiener kernel estimates using 1024 in- 
pu t /ou tpu t  data points and the aforementioned Laguerre expansion technique. The 
resulting estimates are shown along with the estimate for c = 0 (i.e., no cubic feed- 
back) in Fig. 3. We observe a gradual decrease of  damping (i.e., emergence of an "un- 
dershoot") in the kernel estimates, consistent with Eq. 36. We can also observe a 
gradual increase of  their bandwidth as the G W N  input power level (P) increases, 
which is demonstrated in Fig. 4, where the FFT magnitude functions of  these kernel 
estimates are shown up to normalized frequency 0.1 Hz (Nyquist frequency is 0.5 Hz). 
We observe the gradual transition from an overdamped to an underdamped mode and 
a companion decrease of  zero-frequency gain as P increases, similar to what has been 
observed in certain low-pass sensory systems such as retinal horizontal cells. Note that 
this system becomes unstable when P increases beyond a certain value. 

Next we explore the effect of  varying the (GWN) input mean level while keeping 
c and P constant. We simulate the previous system for e = 0.001 and P = 1 using in- 
put mean levels/~ = 0, 1, 2, and 3, successively. The response amplitude histograms 
are shown in Fig. 5, and the cubic nonlinearity used in negative feedback is shown 
in Fig. 6. The obtained first-order Wiener kernel estimates are shown in Fig. 7. We 
observe that the changes in the waveform of  the kernels as the input mean level in- 
creases are qualitatively similar to the ones induced by increasing input power  
l e v e l - t h a t  is, increasing bandwidth and decreasing damping. According to the gen- 
eral expression of  Eq. 34, we have for this system 

f0 h~(r)  = k l ( z )  - 3e [P r  + (/j,.y)2] k l ( X ) k l ( T - X ) d h  �9 (37) 
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FIGURE 2. Impulse response function of overdamped linear forward subsystem (L-l) used in the first 
simulation example. 
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order Volterra kernel of the system (P - ,  0). Observe the changes in kernel waveform as P increases. 
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The changes in kernel wave fo rm  fo l l ow  the same pattern as in Fig. 3. 
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We see that the effect of  increasing P is similar to the effect of  increasing/d, 2 (which 
also implies that the effect is the same for positive or negative #) and the differen- 
tial effect is proportional to r and 3, 2, respectively. The latter observation implies 
that the differential effect of changing P or /z  2 by the same amount  is greater for 
mean level changes in the case of a low-pass forward subsystem; however, for under- 
damped or band-pass forward subsystems this differential effect may be reversed. 

Another point of  practical interest that must be made in connection with this ex- 
ample is the difference between the first-order kernel (Volterra or Wiener) and the sys- 
tem response to an impulse. This point is often the source of  confusion due to biases 
ingrained by linear system analysis. For a third-order system, such as in this exam- 
ple for small e, the response to an impulse input x ( t )  = A ~ ( t )  is 

r ( t )  = A k ~ ( t )  + A 3 k 3 ( t , t , t )  

= A k l ( t ) - e A  3 k l ( X ) k ~ ( t - X ) d X  . 

(38) 

This is clearly different from the first-order Volterra kernel kl ( t )  and its Wiener 
counterpart  given by Eq. 36. 

Likewise, the response to a step input x ( t )  = A u ( t )  is 

;0 fo /J0 t s ( t ) = A  k l ( r )  d r - e A  3 k l ( r )  k l ( h - r )  dX d r .  (39) 

The changes in pulse response waveforms as the pulse amplitude increases are dem- 
onstrated in Fig. 8, where the responses of  this system are shown for pulse amplitudes 
of 1, 2, and 4. The observed changes are qualitatively consistent with the previous dis- 
cussion (i.e., the responses are less damped for stronger pulse inputs). However,  we 
cannot obtain the first-order Wiener kernel or the response to an impulse by differ- 
entiating them in time, as in the linear case. Observe also the sharp difference between 
on-set and off-set response, characteristic of nonlinear system and so often seen in 
physiological systems. The steady-state value of the step response for various values 
of A is given by 

L(O) y + e y  3 = A (40) 

(in the region of  stability of this system) where L(0) = 1/K~ (0) for this system. The 
steady-state values of the pulse response as a function of  pulse amplitude are shown 
in Fig. 9. Note that these values are different, in general, from the mean response 
value when the GWN input has nonzero mean. 

In the next series of simulations, we consider an underdamped linear forward sub- 
system (its impulse response function shown in Fig. 10) with negative cubic feedback 
of  e = 0.008. The resulting first-order Wiener kernel estimates for increasing GWN 
input power level (viz., P = 1, 2, and 4) are shown in Fig. 11 along with the first-or- 
der Volterra kernel of  the system (which is the same as the impulse response function 
of  the linear forward subsystem, shown in Fig. 10). We observe a gradual deepening 
of  the undershoot portion of  the kernel accompanied by a gradual shortening of  its 
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FIGURE 10, Impulse response function of the underdamped linear forward subsystem used in the 
second simulation example. 
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duration as P increases (i.e., we see a gradual broadening of  the system bandwidth 
and upward shift of  the resonance frequency as P increases). This is demonstrated in 
Fig. 12, where the FFT magnitudes of  the kernels of  Fig. 11 are shown. The changes 
in the waveform of these kernels with increasing P are consistent with our theoreti- 
cal analysis. 

Next we compute the first-order Wiener kernels for e = 0.008, P = 1, and increas- 
ing G W N  input mean level. The resulting kernels for/x -- 0, 1, 2, and 4 are shown in 
Fig. 13, and they demonstrate  insignificant effect of  the nonzero mean levels due to 
the fact that 3' (i.e., the integral of  k~) is extremely small in this case, as predicted by 
Eq. 37. Finally, the system response to pulses of  increasing amplitude (A = 1, 2, and 
4) are shown in Fig. 14, demonstrat ing increasing resonance frequency and decreas- 
ing damping in the pulse response as A increases. Note also that the steady-state val- 
ues of  the pulse responses are extremely small, and the on-set /off-set  response 
waveforms are similar (with reversed polarity), due to the very small value of 3' = 
KI (0) = l /L(0)  (cf. Eq. 40). 

Sigmoid Feedback Systems 

The next round of simulations deals with a sigmoid feedback nonlinearity which, 
unlike the cubic one, is bounded for any response signal amplitude. The following 
normalized arctangent function, shown in Fig. 15 for e = 1 and o~ = 0.25, was used 
in the simulations: 

2 
f ( y )  = e - arctan(c~y) . (41) 

71" 

For the low-pass forward subsystem shown in Fig. 2, the resulting first-order Wie- 
ner kernels for P = 1 and e = 0, 0.125, 0.25, and 0.5 are shown in Fig. 16 (a  = 0.25). 
The qualitative changes in waveform are similar to the cubic feedback case, for in- 
creasing feedback strength. However, for fixed sigmoid feedback strength (e) the ker- 
nels resulting from increasing GWN input power level P follow the reverse transition 
in waveform. This is demonstrated in Fig. 17, where the kernels obtained for P = 1, 
4, 16, and 64 are shown (e = 0.25 for all cases). The changes in kernel waveform fol- 
low the previously presented analysis, bearing in mind that the first-order Volterra 
kernel of  this system is not the same as the impulse response function of  the forward 
subsystem, but it is the impulse response function of the overall linear feedback sys- 
tem when the linear term of  the sigmoid nonlinearity (i.e., its slope at zero) is incor- 
porated in the (negative) feedback loop. Thus, the kernel waveform changes gradually 
f rom the impulse response function o f  the linear feedback system to that of  the lin- 
ear forward subsystem as P increases from very small to very large values. The ker- 
nel waveform changes gradually f rom underdamped to overdamped as P increases 
(i.e., the gain of  the equivalent linearized feedback decreases). This is demonstrated 
by the kernel FFT magnitudes shown in Fig. 18 for the kernels in Fig. 17. 

Because of the bounded nature of  the (negative) sigmoid nonlinearity, large val- 
ues of  e and /o r  P do not lead to system instabilities as in the case of  cubic feedback. 
Increasing values of  e result in decreasing damping, eventually leading to oscillatory 
behavior. This is demonstrated in Fig. 19, where the kernels for e = 0.5, 1, 2, and 4 
are shown (P  = 1). The oscillatory behavior of  the system, for very large values of  



0.113E-01 

0.100E-01 

0.875E-02 
- r  

b .  

O 

Z 

E 

A 

0.750E-02 

0.625E-02 

0.50OE-02 

0.375E-02 - 

0,250E-02 - 

0.125E-02 

0.0 

0.0 

, + , , , , , , , 1 , , , , , , , , , i , , , , , , , , , i , , , , , , , , , 1 ,  , , , + , , + , 1  

0.400E-01 0.800E-01 0.120 0.160 0.209 

0.125E-01 

NORMALIZED FREOUENCY 

FIGURE 12. FFT magnitudes of the first-order Wiener kernels shown in Fig. 1 1. Observe the grad- 
ual increase of bandwidth and upward shift of resonant frequency as P increases. 

0.0 

0,480 

0.400 

0.320 

0.240 

0.160 

0.800E-01 

0.0 

-0.800E-01 

-0.'160 

-0.240 

-0.320 
' '  ' ' ' '  ' ' ' 1  ' '  . . . .  ' ' ' I ' ' '  ' ' ' '  ' ' 1  , ' , ,  , , , +  , I  , , , ,  , , ,  , , I  

8.00 16.0 24.0 32.0 40.0 

Wiener Analysis of  Nonlinear Feedback 363 

TIME LAG 

FIGURE 13. First-order Wiener kernels of negative cubic feedback system (~ = 0.008) wi th under- 
damped forward for different GWN input mean levels/~ = O, 1 ,2 ,  and 4 (P = 1 ). Observe the negli- 
gible change in kernel waveform as predicted by the analytical derivations. 
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FIGURE 16. First-order Wiener kernel estimates of negative sigmoid feedback system with the for- 
ward subsystem shown in Fig. 2, for ~ = O, 0 ,125,  0.25,  and 0.5 ( P =  1, a = 0 .25  in all cases). Ob- 
serve the similarity in changes of kernel waveform with the ones shown in Fig. 3. 
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FIGURE 19. First-order Wiener kernels of negative sigmoid feedback system with overdamped for- 
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FIGURE 20. Oscillatory response of negative sigmoid feedback system fo r  GWN input (P = 1 l a n d  

= 100 and 1000.  

e, is more dramatically demonstrated in Fig. 20, where the actual system responses 
y ( t )  for e = 100 and 1000 are shown (P  = 1). The system goes into perfect oscilla- 
tion regardless of the GWN input, due to the overwhelming action of the negative sig- 
moid feedback that is both bounded and symmetric about the origin. The amplitude 
of  this oscillation is proportional to e, but it is independent of  the input power level. 
In fact, the oscillatory response remains the same in amplitude and frequency for any 
input signal (regardless of its amplitude and waveform) as long as the value of  e is 
much larger than the maximum value of  the input. The initial transient and the phase 
of  the oscillation, however, may vary according to the input power and waveform. 
The frequency of  the oscillation depends on the linear forward subsystem. For in- 
stance, a low-pass subsystem with shorter memory (i.e., shorter time support) leads 
to higher frequency of oscillation, and so does an underdamped system with the same 
memory extent. 

The case of  oscillatory behavior due to large sigmoid negative feedback is not cov- 
ered by the Volterra-Wiener analysis presented in the previous section. It is, however, 
of  great interest in physiology because of  the numerous and functionally important  
physiological oscillators. It is a subject worthy of  further exploration, albeit outside 
the scope of  this article. 

The effect of  varying the slope of  the sigmoid nonlinearity is demonstrated in 
Fig. 21, where the first-order kernels for e = 1, P = 1, and slopes o~ = 0.125, 0.25, 0.5, 
and 1 are shown. We observe gradually decreasing damping with increasing slope. 
This transition reaches asymptotically a limit in both directions of  changing o~ values, 
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FIGURE 21. First-order Wiener kernels of negative sigmoid feedback system (E = 1, P = 1) fo r  in- 

creasing slope of sigmoid curve: (~ = O. 125, 0.25,  0.5, and 1. Observe that kernel waveform changes 
are qualitatively similar with increasing e (see Fig, 19). 

as expected. For ~ ~ 0% the sigmoid nonlinearity becomes the signum function and 
leads to perfect oscillations; and for ~ ~ 0 the gain of  the feedback loop diminishes 
leading to a kernel identical to the impulse response function of  the forward linear 
subsystem. 

The effect of  nonzero input mean level is demonstrated in Fig. 22, where the ker- 
nels for # = 0, 1, 2, and 4 are shown (e = 1, P = 1, ot = 0.25). The kernels become 
more damped as the G W N  input mean level increases, following the transition pat- 
tern of  increasing input power level (i.e., decreasing gain of  the equivalent linearized 
feedback). 

In the case of  the underdamped forward subsystem shown in Fig. l0 and sigmoid 
(negative) feedback, the results are qualitatively similar to the previous case. The 
changes in the kernel waveform undergo a gradual transition from the linearized feed- 
back system to the forward linear subsystem as the GWN input power level increases 
f rom very small to very large values. The two limit kernel waveforms (for P - ,  0 and 
p ~  oo) are shown in Fig. 23 for e = 1, ~ = 0.25. The effect of  the sigmoid feedback 
is less dramatic in this case, since the kernel retains its underdamped mode for all val- 
ues of  P. There is, however, a downward shift o f  resonance frequency and increase 
of  damping when P increases, as indicated by the FFT magnitudes of  the "limit" ker- 
nel waveforms (of Fig. 23) shown in Fig. 24. 

Positive Nonlinear Feedback 

The reverse transition in kernel waveform is observed when the polarity of  small 
nonlinear feedback is changed, according to Eq. 37. Positive decompressive (e.g., cu- 
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FIGURE 23. The two limit Wiener kernel waveforms of negative sigmoid feedback system (c = I, 

ot = 0.25) with underdamped forward, obtained for P~ 0 and P-~ oo. 
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FIGURE 24.  FFT magnitudes of the two limit kernel waveforms shown in Fig. 23.  Observe the lower 
frequency for P ~ oo. 

bic) feedback leads to a decrease in resonance frequency and higher gain values in the 
resonant region. The reverse transition in kernel waveform occurs (i.e., upward shift 
of resonanee frequency and decrease of  damping with increasing P values) when com- 
pressive (e.g., sigmoid) feedback becomes positive. 

The great advantage of  sigmoid versus cubic feedback is that stability of  the sys- 
tem behavior is retained over a broader range of  the input power level. For this rea- 
son, sigmoid feedback is an appealing candidate for models of  physiological feedback 
systems. For those systems that exhibit transitions to broader bandwidth and de- 
creased damping as P increases, candidate models may include either negative decom- 
pressive (e.g., cubic) feedback or positive compressive (e.g., sigmoid) feedback. For 
those systems that exhibit the reverse transition patterns (i.e., to narrower bandwidth 
and increased damping) as P increases, candidate models may include either positive 
decompressive or negative compressive feedback. 

Second-Order Kernels o f  Nonlinear Feedback Systems 

Our examples so far have employed nonlinear feedback with odd symmetry (cu- 
bic and sigmoid), and our attention has focused on first-order Wiener kernels of  the 
resulting systems. These systems do not have even-order kernels. However, if the feed- 
back nonlinearity is not odd-symmetric, then even-order kernels exist. An example 
of this is given for quadratic feedback when the underdamped linear forward subsys- 
tem is the one shown in Fig. 10. Simulations were made for negative quadratic feed- 
back of  the form ey2, for e = 0.08 (P  = 1), and the resulting second-order Wiener 
kernel estimate is shown in Fig. 25. It has the approximate form and size predicted 
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FIGURE 25.  Second-order Wiener kernel estimate for negative quadratic feedback system with linear 
underdamped forward  (~ = 0 . 0 8 ,  P = 1 ). 

by our analytical derivations (cf. Eq. 30) as indicated by the exact second-order kernel 
shown in Fig. 26. The first-order Wiener kernels are not affected by the quadratic 
feedback for small values of e. 

It is important to note that, although the cubic or sigmoid feedback systems have 
no even-order Volterra kernels, Wiener analysis of  these systems with nonzero GWN 
input mean yields even-order Wiener kernels dependent on the nonzero input mean 
(cf. Eq. 32). This point was discussed earlier, and general expressions were derived 
that relate the Wiener kernels for GWN input mean # to reference Volterra kernels 
corresponding to a reference input mean #0 (see Eqs. 32 and 33). Consider, for in- 
stance, a negative cubic feedback system where only K~ and K3 are assumed to be 
significant for small values of c. Then the theoretically derived Eq. 33 yields (for 
n = 2) 

H~' (601 ,602)  = 3~K3 (wl, 092,0)  

= -3eu'yK1 (601)K1 (602)K1 (6ol + 602) " 
(42) 

Equation 42 implies that the second-order kernel will retain its shape but increase lin- 
early in absolute size with increasing tz (provided, of  course, that E is small). These 
results are supported by our computer simulations. 

N O N L I N E A R  FEEDBACK IN SOME SENSORY BIOSYSTEMS 

Retinal Cells 

Extensive applications of  the Wiener (white-noise) approach have been made to the 
study of retinal cells. In these studies, the experimental stimulus consists of  white- 
noise modulation of light intensity about a constant level of illumination, and the re- 
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FIGURE 26. Exact second-order Wiener kernel of the system described in the caption of Fig. 25. 

sponse is the intracellular or extracellular potential of  a certain retinal cell. Wiener 
kernels (typically of first and second order) are subsequently computed from the stim- 
ulus/response data. The experiment may be repeated for different levels of  constant 
illumination (input mean) and various white-noise input power levels. It has been ob- 
served that the waveform of the resulting kernels for some retinal cells varies with dif- 
ferent input mean and /or  power level. We propose that these changes in waveform 
may be explained by the presence of a nonlinear feedback mechanism, in accordance 
with the analysis and discussion of  the previous sections. Note that these changes can- 
not be explained by simple cascade models that have been studied previously and re- 
ported in the literature. 

The first such observation was made in the early 1970s (10) on first-order Wiener 
kernel estimates of horizontal cells in the catfish retina, obtained for two different 
levels of  stimulation (low and high mean levels with proportional GWN modulation). 
The kernel corresponding to high level of  stimulation was less damped and had 
shorter latency (shorter peak-response time). This observation was repeated many 
times later (e.g., [17]), and a gradual transition to less damped and faster (shorter la- 
tency time) waveforms was observed with increasing P and/~. These changes are qual- 
itatively similar to the ones observed in our simulations of  negative decompressive 
(cubic) feedback systems with overdamped linear forward subsystem. However, the 
changes in latency time and kernel size are much more pronounced in the experimen- 
tal kernels than in our simulations of  negative cubic feedback presented earlier. 

To account for the experimentally observed greater reduction in kernel size, we 
may introduce a compressive (static) nonlinearity in cascade with the overall feedback 
system that leads to an additional reduction of the gain of  the overall cascade system 
as P and /o r  # increase. On the other hand, a greater reduction in the peak-response 
(latency) time may require the introduction of another dynamic component in cascade 
with the feedback system. 

Led by these observations, we propose the block-structured model, shown in 
Fig. 27, for the light-to-horizontal cell system. This model is comprised of  three 
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decompressive (cubic) feedback systems with different forward components (all lin- 
ear and overdamped) and a compressive (static) nonlinearity in cascade, as shown in 
Fig. 27. The first part of this cascade model, comprised of the P L / P N  feedback loop 
and the compressive nonlinearity CN, corresponds to the transformations taking place 
in the outer segment of the photoreceptor and represents the nonlinear dynamics of 
the phototransduction process. The second part, comprised of the R L / R N  feedback 
loop, represents the nonlinear dynamic transformations taking place in the inner seg- 
ment of the photoreceptors (including the receptor terminals). The third part, com- 
prised of the H L / H N  feedback loop, represents the nonlinear dynamic transformations 
taking place in the horizontal cell and its synaptic junction with the receptor. Note 
that the model, at this point, does not differentiate between cone/rod receptors and 
does not take into account spatial interactions. 

When the model is simulated for GWN stimuli and parameter values judiciously 
chosen (as indicated in the caption of Fig. 27), the first-order Wiener kernels can be 
estimated using our latest Laguerre expansion technique. The results are shown in 
Fig. 28 for GWN input power levels P = 0.5, 1, 2, and 4. We observe waveform 
changes that resemble more closely the experimentally observed (note that hyperpo- 
larization is plotted as a positive deflection). Since experimentally obtained horizon- 
tal-cell kernels are usually plotted in the contrast sensitivity scale (i.e., scaled by the 
GWN input power level), we show the same simulation results in contrast sensitivity 
scale in Fig. 29. The purpose of this demonstration is to show that the experimentally 
observed waveform changes can be reproduced fairly well by a model of this form 
employing nonlinear feedback. The selected model components and parameters do 
not necessarily correspond to physiologically accurate ones. The latter must be deter- 
mined by repeated experiments (for different values of P and/~) and kernel analysis 
in the presented context for each particular physiological preparation. 

The possibility of nonlinear feedback in the receptor-horizontal cell complex in the 
retina has been postulated in the past (10), and the presented simulations seem to pro- 
vide additional support for this hypothesis. Greater changes in first-order kernel wave- 
form have been observed in experiments that used steady illumination for the 
surround (annulus) of the receptive field of the horizontal cell (17) in addition to 
GWN stimulus at the center (spot). This is consistent with the hypothesis that sur- 
round stimulation makes a stronger contribution to the nonlinear feedback mecha- 
nism, possibly due to the integrative function of the horizontal cell over the surround 

x(t)  y( t)  

\ J ~. ,J \ J 

Receptor Cell Receptor Cell Horizontal Cell 
Outer Segment Inner Segment 

(a) 

FIGURE 27. (a) Schematic of the block-structured model of light --* horizontal cell system. Input x(t) 
represents the light stimulus and output y(t) the horizontal cell response. (Figure continued on fol- 
lowing page. ) 
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FIGURE 27 continued. (b) Impulse response functions of the linear time-invariant forward sub- 
systems PL, RL, and ML used in simulations. Note that the static feedback nonlinearities PN, RN, and 
MN used in simulations are cubic of the form shown in Fig. 6 with coefficients e = 0 .05 ,  0 .10 ,  and 
0 .01 ,  respectively. The static nonlinarity CN is sigmoid of the form shown in Fig. 15 and described 
by Eq. 41 with e = 2, ~ = 0.2.  
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FIGURE 28. First-order Wiener kernels of horizontal cell model shown in Fig. 27(a), for P =  0.5,  1, 
2, and 4. Observe the gradual transition in kernel waveform akin to the experimentally observed. 
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FIGURE 29. The same as in Fig. 28, with the kernels plotted in contrast sensitivity scale (i.e., each 
kernel multiplied by its corresponding power level). 
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of the receptive field, that triggers the nonlinear feedback to the centrally active re- 
ceptors. The presented analysis offers the quantitative means for testing this hypoth- 
esis rigorously and for estimating the form of this nonlinear feedback on the basis of 
Eq. 34 using experimental kernel measurements obtained for various values of P and/~. 

In a similar fashion, the experimentally observed changes in the waveform of bi- 
polar-cell first-order kernels (for increasing GWN input power level) can be replicated 
by extending this model to include the bipolar cell processing level. As shown in 
Fig. 30, the response of the horizontal cell is subtracted from the response of the 
receptor (inner segment), and the resulting signal is passed through a nonlinear feed- 
back component representing the synapses (from the receptor terminals to the horizon- 
tal processes and bipolar dendrites) as well as the transformation of the postsynaptic 
potential through the bipolar dendrites. The resulting first-order kernel estimates are 
shown in Fig. 31, and they depict the experimentally observed changes (i.e., shorter 
latency, increased bandwidth, and increased sensitivity with increasing P). 

Beyond these mechanistic explanations, the important scientific question can be 
posed about the teleological reasons for the existence of decompressive feedback in 
retinal cells, in tandem with compressive nonlinearities. The presented simulations and 
the resulting models seem to suggest that this is an effective functional design that se- 
cures sensory transduction over a very broad range of stimulus intensities while, at 
the same time, provides adequate (practically undiminishing) dynamic range of op- 
eration about a dynamically changing operating point (attuned to changing stimulus 
conditions). Furthermore, the gradual transition of the system functional character- 
istics to an underdamped and shorter-latency response as the stimulus intensity in- 
creases provides for faster response and is more attuned to changes in sensory 
processing when the stimulus intensity and temporal changes are greater. This would 
be a suitable attribute for a sensory system that has probably evolved under the re- 
quirements of effective detection of changes in the visual field (threat detection) for 
survival purposes. 

Auditory Fibers 

An interesting example of a band-pass sensory system whose first-order Wiener 
kernel undergoes a transition to lower resonance frequencies as the input power level 
increases is found in auditory nerve fibers that have center (resonance) frequencies 
between 1.5 and 6 KHz. These experimental studies were conducted with pseudoran- 
dom binary stimuli that yield a set of kernels akin to Wiener kernels. 

x f t) I ~ + ~  y (t) 

\ j k .  Jk.  J \  J 

Receptor Cell Receptor Cell Horizontal Cell Bipolar Cell 
Outer Segment Inner Segment 

(a) 

FIGURE 30. (a) Schematic of the block-structured model of light --, bipolar cell system, which is an 
extension of the light ~ horizontal cell model shown in Fig, 27, as described in the text. (Figure con- 
t inued on facing page. ) 
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FIGURE 30 continued. (b) Impulse response function of linear time-invariant forward subsystem BL, 
and static feedback nonlinearity BN used in simulations, 

To explore whether nonlinear feedback may constitute a plausible model in this 
case, we consider a band-pass linear forward subsystem with impulse response func- 
tion shown in Fig. 32. In accordance with our analysis, the experimentally observed 
changes may be reproduced if a negative compressive (e.g., sigmoid) or positive 
decompressive (e.g., cubic) feedback is included in the model. Since the system re- 
mains stable for a very broad range of  stimulus intensity, we consider the case of neg- 
ative sigmoid feedback, like the one shown in Fig. 15 for e = 1 and o~ = 0.25. The 
obtained first-order Wiener kernel estimates for GWN input power level P -- 1, 16, 
256, and 4096 are shown in Fig. 33 (with appropriate plotting offsets to allow easier 
visual inspection). We observe the gradual contraction of the "envelope function" and 
the resonance frequency of the kernel with increasing P, which were also observed ex- 
perimentally (15). Since these changes are more easily seen in the frequency domain 
(the preferred domain in auditory studies), we also show the FFT magnitudes of  these 
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FIGURE 31. First-order Wiener kernels of bipolar cell model shown in Fig. 30(a), for P =  0.5, 1, 2, 
and 4. Observe the gradual transition in kernel waveform akin to the experimentally observed. 
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FIGURE 32: Impulse response function of band-pass linear forward used in simulation of negative 
sigmoid feedback system, emulating an auditory nerve fiber. 
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FIGURE 33. First-order Wiener kernels of negative sigmoid feedback system (~ = 1, ~ = 0.25)  with 
the band-pass forward of Fig. 32, for  P = 1 (trace 1 ), 16 (trace 2), 256  (trace 3), and 4 0 9 6  (trace 
4). Observe the contracting envelope and decreasing resonance frequency as P increases. 

kernels in Fig. 34. These are equivalent to inverted tuning curves, and they exhibit de- 
creasing resonance frequency and broadening of the tuning curve as P increases, sim- 
ilar to the experimental observations in auditory nerve fibers. 

This nonlinear feedback model appears to capture the essential functional charac- 
teristics of primary auditory fibers (at least qualitatively) that have been observed ex- 
perimentally. The negative compressive feedback can be thought as intensity-reduced 
stiffness, which has been observed in independent studies of  the transduction prop- 
erties of cochlear hair cells. More accurate quantitative measures of  the functional 
components and parameters of  this feedback system (e.g., the precise form of  the 
feedback nonlinearity) can be obtained on the basis of  the analysis presented earlier 
(see "Sigmoid Feedback Systems"), but they will require a series of properly designed 
white-noise experiments. Furthermore,  the presence of  a negative compressive feed- 
back in the auditory fiber response characteristics may provide a plausible explana- 
tion for the onset of  pathological conditions such as tinnitus, as a situation where the 
strength of the compressive feedback increases beyond normal values and leads to un- 
diminishing oscillatory behavior irrespective of auditory input. This was demonstrated 
earlier through computer simulations of  such feedback systems. 

CONCLUSIONS 

Wiener kernels of  physiological systems have been measured experimentally in re- 
cent years, using GWN or binary/ ternary stimuli of  various power levels and mean 
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FIGURE 34. FFT magnitudes of the kernels shown in Fig. 33. We observe decreasing resonance 
frequency and gain as P increases, as well as broadening of the tuning curve in reverse relation to 
the envelope of the band-pass response characteristics. When these curves are plotted in contrast 
sensitivity scale (i.e., each multiplied by its corresponding P value), then the resonance-frequency 
gain will appear, increasing with increasing P. 

levels. They have often exhibited changes in waveform and size for different mean 
and power levels of the stimulus. Models that employ nonlinear feedback can account 
for such changes in kernel waveform. 

Nonlinear feedback has been long thought to exist in many important physiological 
systems, but its systematic and rigorous study has been hindered by the complexity 
(and often inadequacy) of the analytical methods used. The study of Volterra-Wiener 
expansions of  nonlinear differential equations has led to some analytical results that 
begin to shed light on the important question of  Wiener analysis of nonlinear feed- 
back systems. This article presents some results, obtained for a class of  nonlinear 
feedback systems, that relate Wiener kernel measurements with the effects of nonlin- 
ear feedback under various experimental conditions. It addresses the question, What 
kind of changes in kernel waveform (as a result of  varying stimulus conditions) can 
a nonlinear feedback model explain? Explicit mathematical expressions are presented 
that relate Wiener kernel measurements to the characteristics of  the feedback system 
and the stimulus parameters. The theoretical results were tested with simulations, and 
their validity was demonstrated in a variety of cases (cubic and sigmoid feedback with 
overdamped, underdamped, or band-pass linear forward subsystem). These test cases 
were chosen as to suggest possible interpretation of  experimental results that have 



Wiener Analysis of Nonlinear Feedback 381 

been published in recent years for two types of sensory systems: retinal horizontal and 
bipolar cells, and auditory nerve fibers. It was shown that relatively simple nonlin- 
ear feedback models can be constructed that reproduce the qualitative changes in ker- 
nel waveforms observed experimentally in these sensory systems. Precise quantitative 
determination of feedback models requires analysis (in the presented context) of a se- 
ries of  properly designed experimental data. 

Specifically, it was shown that negative decompressive feedback (e.g., cubic) or 
positive compressive feedback (e.g., sigmoid) result in gradually decreasing damping 
(increasing bandwidth) of the first-order Wiener kernel as the GWN input power level 
and/or  mean level increase. Conversely, positive decompressive or negative compres- 
sive feedback result in the reverse pattern of  changes. The extent of  these effects de- 
pends, of  course, on the exact type of  feedback nonlinearity and /o r  linear forward 
subsystem. There are also companion effects on the kernel size and system sensitiv- 
ity (i.e., zero-frequency or resonance-frequency gain). It was demonstrated through 
analysis and computer simulations that the experimental observations of  first-order 
Wiener kernel measurements for retinal horizontal and bipolar cells can be qualita- 
tively explained with the use of negative decompressive (cubic) feedback and low-pass 
linear forward subsystems (viz., the gradual transition from an overdamped to an un- 
derdamped mode as the GWN stimulus power and /or  mean level increase). In the 
case of  auditory nerve fibers, it was shown that the use of  negative compressive (sig- 
moid) feedback and a band-pass linear forward subsystem can reproduce qualitatively 
the effects observed experimentally on their tuning curves for increasing stimulus in- 
tensity (viz., a gradual downward shift of the center frequency and broadening of the 
tuning curve with increasing stimulus power level). 

The effect of quadratic feedback on the second-order Wiener kernels was also dis- 
cussed and demonstrated through computer simulations. Likewise, the emergence of  
second-order Wiener kernels when GWN inputs with nonzero mean are used in prob- 
ing cubic or sigmoid feedback systems was discussed, and agreement with our theo- 
retical derivations was demonstrated through simulations. 

It is hoped that this work will inseminate an interest among systems neurophysiol- 
ogists to explore the possibility of nonlinear feedback models to explain changes in 
Wiener kernel waveforms when the experimental stimulus conditions (i.e., power and 
mean level) vary. These changes in kernel waveform cannot be explained by simple 
cascade models of  linear and static nonlinear components,  which are currently pop- 
ular in efforts to construct equivalent block-structured models from Wiener kernel 
measurements. The nonlinear feedback models may offer compact representations of 
the stimulus-response nonlinear dynamic relationship in these cases and may lead to 
physiologically meaningful interpretations of  the system function. For instance, in the 
case of the auditory nerve fibers, the suggested model of negative sigmoid feedback 
may signify the gradually decreasing stiffness of  hair cells as the sound stimulus in- 
tensity increases and may offer a plausible explanation for pathological states of  the 
auditory system, such as tinnitus. Likewise, in the case of  retinal cells, negative 
decompressive feedback in tandem with compressive nonlinearities may explain the 
ability of  the "front  end" of  the visual system to accommodate a very broad range 
of  visual stimulus intensities while preserving adequate dynamic range for effective 
information processing, as well as the ability to remain attuned to changes in stim- 
ulus conditions. 
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