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SUMMARY
In this computational study we consider a generalized minimal model structure for the
intravenously infused insulin–blood glucose dynamics, which can represent a wide variety of
diabetic patients, and augment this model structure with a glucose rate disturbance signal that
captures the aggregate effects of various internal and external factors on blood glucose. Then we
develop a model-based, switching controller, which attempts to balance between optimal
performance, reduced computational complexity and avoidance of dangerous hypoglycaemic
events. We evaluate the proposed algorithm relative to the widely studied proportional—derivative
controller for the regulation of blood glucose with continuous insulin infusions. The results show
that the proposed switching control strategy can regulate blood glucose much better than the
proportional—derivative controller for all the different types of diabetic patients examined. This
new algorithm is also shown to be remarkably robust in the event of concurrent, unknown
variations in critical parameters of the adopted model.
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1. INTRODUCTION
Diabetes represents a major threat to public health with alarmingly rising trends of incidence
and severity in recent years, and numerous detrimental consequences for public health. The
mean level of concentration of blood glucose in normal human subjects is about 90 mg/dl
and the zone from 70–110 mg/dl is usually defined as the desired state of normoglycaemia.
Significant and prolonged deviations from this zone may give rise to numerous pathologies
with serious and extensive clinical impact, that is increasingly recognized by current medical
practice. When blood glucose concentration falls under 60 mg/dl, we have the acute and
very dangerous state of hypoglycaemia that may lead to brain damage or even death if
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prolonged. On the other hand, when blood glucose concentration rises above 120 mg/dl for
prolonged periods of time, we are faced with the detrimental state of hyperglycaemia that
may cause a host of long-term health problems (e.g. neuropathies, kidney failure, loss of
vision, etc.). The severity of the latter clinical effects is increasingly recognized as medical
science advances and the physiological causes of diabetes are better understood, thus
revealing it as a major lurking threat to public health with long-term repercussions.
Prolonged hyperglycaemia is usually caused by defects in insulin production (Type 1
diabetes), insulin action or both (Type 2 diabetes) [1].

Throughout the last 40 years, many different approaches have been followed for the
automated regulation of blood glucose, with the vast majority of publications employing
either simple, linear controllers [2-5] or model-based controllers [4,6-10] due to their
conceptual simplicity and effectiveness. However, despite the considerable effort and
resources that have been dedicated to this task, no method or approach has been
demonstrated yet to produce an effective solution with clinical utility and wide applicability.
In our opinion, this is due primarily to the following reasons:

• Most of the computational studies of glucose regulation are restricted to Type 1
diabetes and therefore employ the diabetic minimal model (DMM) [4,6,8,11,12] to
represent the actual system in their simulations. Closer examination of this model
indicates that the major function of endogenous insulin production is not
represented, which makes the DMM unsuitable for any other diabetic case.

• Most of the publications to date study a controller’s ability to regulate blood
glucose in the event of a glucose ‘disturbance’ caused by a single meal or a
sequence of meals [6]. However, the form of the actual glucose ‘disturbance’ that
the controller will face is likely to be more complicated, since it will include the
aggregate effects of the endocrine system (e.g. systemic secretions of glucagon,
cortisol, epinephrine) and of many external factors (e.g. exercise, stress, mental
activity, etc.) on blood glucose concentration.

2. STATEMENT OF THE PROBLEM
Insulin–glucose dynamics

As mentioned above, most of the computational studies of glucose regulation in diabetic
patients adopt the DMM. The implicit assumption of this model is that no endogenous
insulin is produced and secreted in plasma. Although this is true for Type 1 cases, it is
certainly not true for Type 2 diabetics or other patients in need of continuous insulin therapy
(e.g. patients in the ICU—see [13]). In order to incorporate this important phenomenon, we
augment the DMM with an additional differential equation describing the endogenous
insulin production dynamics. The resulting model, very similar in structure to the original
MM [14,15], operates in ‘closed-loop’ through the feedback exerted by the endogenously
secreted insulin and utilizes intravenous insulin infusions like many similar studies the last
years [4,6,8-10,16]:

U is the rate of intravenously infused insulin (deviation from its basal rate), Iex is the
concentration of plasma insulin due to exogenous infusion (deviation from its basal value),
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Ien is the concentration of plasma insulin due to endogenous production and secretion
(deviation from its basal value), X is the internal variable of ‘insulin action’, D is the
stochastic glucose rate disturbance caused by internal and external factors, G is the deviation
of blood glucose concentration from its basal value of Gb=90mg/dl and Y is the
concentration of blood glucose. A similar model structure has been used recently with
promising clinical results [10].

We estimate the implicated parameters using nonlinear least squares fitting of the MM to
input–output data generated by Sorensen’s model [17]. Since the MM operates in ‘closed-
loop’, we follow the technique of artificially ‘opening-the-loop’; in other words every loop
of the system (feed-forward or feedback) is identified separately. All input signals used
during the system identification procedure are broadband (Gaussian white noise) with
carefully selected dynamic ranges, in order to fully excite the dynamics of each loop. The
procedure above results in the following parameter values: p1=0.018min−1, p2=0.052min−1,
p3=1.2×10−5L/min2mU, p4=0.28min−1, VI =3L, α=0.44min−1,β=0.108(mU/L)(mg/dl)−1

min−1 and θ=103mg/dl. However, Sorensen’s model (with the parameter values given in his
PhD Thesis) corresponds to healthy and not diabetic subjects, so some parameters of our
model have to be properly modified.

• The primary physiological difference between diabetic (either Type 1 or Type 2)
and healthy subjects is the delayed and attenuated (compared to the normal)
pancreatic responsiveness to hyperglycaemia. In the context of the MM, this
implies reducing the values of parameters α and β. For the first parameter we use a
nominal value of α=0.22 min−1 (double the time constant of endogenous insulin
production). Regarding the second (and more important) parameter β, we take
β=0.054 as reference but various other values are used too, emulating different
types of diabetic patients.

• A secondary physiological difference of diabetics is the decreased (insulin-
stimulated) tissue glucose uptake. In terms of the MM, this can be translated as
reducing the value of parameter p1. This statement is in accordance with the
conclusions of [12] that many subsequent studies have followed. Throughout this
paper we will use p1=0.009 (double the time constant), unless stated otherwise.

• Finally, regarding insulin sensitivity, we use a value of p3=5×10−5, which is one of
the highest values that appear in the literature [8]. Simple analysis can verify that
this change increases the magnitude of the bilinear term X(t)·Y (t) and thus,
enhances the nonlinear nature of the system. This is in agreement with the authors’
experience from studying real insulin–glucose data.

Closed-loop system
The closed-loop system for the regulation of blood glucose that we implement in the present
study can be seen in Figure 1. The MM presented above plays the role of the real system in
our simulations. The glucose sensor generates simulated samples of the output Y with a
sampling interval T (discretized output of the MM), upon which measurement noise N is
added to emulate a realistic situation. A digital controller is used to compute the control
input U to the system based on the measured error signal V . The objective of the digital
controller is to attenuate the effects of the disturbance signal D(t) and keep the error signal V
(t) within bounds, defined as the normoglycaemic region. Usually the targeted value of
blood glucose concentration is set equal to the basal value Gb=90 mg/dl, and a conservative
definition of the normoglycaemic region is from 70 to 110 mg/dl—i.e. |V (t)|≤20 mg/dl.
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Glucose disturbance
A critical set of assumptions in this computational study concerns the design of the glucose
rate disturbance signal D(t) that is used in the simulations. These assumptions are based on
our best understanding of the physiological factors that affect the blood glucose
concentration, independently of the infused insulin. For this purpose, we postulate various
deterministic and stochastic components that seek to capture the main factors influencing the
blood glucose concentration. Specifically, the following additive terms are incorporated into
the disturbance signal D(t):

• Terms of the exponential form γ·exp(−0.05·t), which represent the standard Fisher
meals [11]. Depending on the meal, the parameter γ takes random values within
predetermined ranges, corresponding to 15–25 g of an OGTT for breakfast, 40–60
g of an OGTT for lunch and 30–50 g of an OGTT for dinner. The timing of each
meal is also selected randomly within a two-hour interval specified for breakfast,
lunch and dinner. The effect of this rate disturbance on glucose concentration has
the form of a negative gamma-like function that resembles the convolution of this
exponential form with the exponential function exp(−p1·t). The peak-time of this
gamma-like curve is around 30 min and its peak amplitude varies from 85–310 mg/
dl (for nominal parameter values). Fisher meals exhibit much faster dynamics than
other, higher-order, meal models, like Lehman–Deutsch meals [18]; this makes
them more challenging from a control viewpoint. A simple comparison between
Figures 6 and 8 of [6] can justify this argument.

• Terms of the exponential form γ·exp(−0.11·t), which represent small-scale neuro-
hormonal effects caused by stress, mental exertion and other external factors
affecting the nervous system. The appearance of these terms is modeled with a
Poisson process with parameter λ=0.033min−1. The parameter δ is uniformly
distributed within the range [−0.07, 0.14] in mg/dl/min. The effect of this rate
disturbance term on glucose concentration has again the form of a gamma-like
function, with peak-time of approximately 25 min and peak amplitude from [−5,
10]mg/dl.

• Terms of the exponential form ε·exp(−0.025·t), which represent larger random
effects due to factors such as exercise or strong emotions. The appearance of these
terms is modeled again with a Poisson process with parameter λ=0.016 min−1. The
parameter ε is uniformly distributed within the range [−0.06,0.135] in mg/dl/min.
The effect of this rate disturbance term on glucose concentration has again the form
of a negative gamma-like function with peak-time of approximately 60 min and
peak amplitude from [−15,30]mg/dl

• Two sinusoidal terms of the form αi·sin(ωi·t+φi) with specified amplitudes and
frequencies (αi and ωi) and random phasei φ uniformly distributed within the range
[−π/2, π/2]. These terms represent circadian rhythms [19,20] (endocrine cycles)
with periods 8 and 24 h and amplitudes around 10 mg/dl. The effect of these rate
disturbance terms on glucose concentration is periodic (with minor harmonics
generated by the bilinear term) and their combined amplitude ranges up to 20mg/dl,
depending on the randomly selected phases and the production of endogenous
insulin.

• A constant term B, which is uniformly distributed within the range [0.009, 0.036
and represents a random bias of the subject-specific basal glucose from the nominal
value of Gb. The effect of this term is a random, steady-state, uniformly distributed
offset, ranging from 10 to 40 mg/dl.
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Our goal in this paper is to model the disturbance in a way that is consistent with the
accumulated qualitative knowledge to date in a realistic context and similar to actual
observations in clinical trials (e.g. see the patterns of glucose fluctuations shown in
[7,21,22]). An illustrative example of the combined effect of these rate disturbance factors
on glucose fluctuations is shown in Figure 2.

Simulated glucose sensor and insulin micro-pump
The simulated glucose sensor that is assumed to make the continuous glucose measurements
(every 3 min) in this computational study exhibits the shortcomings that have been observed
in current continuous glucose sensors: a small time lag between arterial and interstitial
glucose (6 min in this study) and underestimation of extreme hyperglycaemic and
hypoglycaemic events (e.g. see the figures in [23]). The total ‘sensor noise’ achieving the
above is created by two distinct low-pass filters in series—at the output of the second,
Gaussian white noise (with high SNR) is added to account for small-scale, random errors
during the measurement procedure. Obviously, the presence of noise makes the control task
even more challenging.

The use of an insulin micro-pump is simulated with a zero-order hold, which performs
digital-to-analog conversion, as well as an upper bound of 200 mU/min on the magnitude of
the exogenous insulin rate, although recent advances in the micro-pump technology have
made possible infusion rates of magnitude greater than 300 mU/min [24].

3. METHODS
Proportional-derivative control

First we present briefly the very popular concept of proportional-derivative control (PDC),
which will be used as a benchmark to evaluate the performance of our novel algorithm. The
discrete-time PDC algorithm utilizes a control signal of the form

where n denotes the discrete-time index for samples obtained every T = 3 min. The values of
the controller parameters used in our simulations are Kp=0.4 and Kd = 8 and correspond to
the best PDC, as determined by successive trials, using the joint criterion of attenuation of
the effects of meal disturbances and avoidance of hypoglycaemic events. The control input
is clipped when it exceeds the imposed lower and upper bounds of 0 and 200 mU/min,
respectively. A recent study [4] has concluded that a PDC is able to regulate blood glucose
and nonlinear, model-based algorithms are in many cases obsolete.

Model predictive control
In this section we outline the concept of model predictive control (MPC), which is at the
core of the control algorithm that we developed. Having knowledge of the nonlinear model
and of all the past input–output pairs, the goal of the MPC is at every time instant n, to
determine the control input value U(n), so that the following cost function is minimized:
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where Y (n + p|n) is the vector of predicted output values over a future horizon of p steps
using the model and the input past values, R is the target reference value for the output, Γy is
a diagonal matrix of weighting coefficients that assigns greater importance to the near-future
predictions and ΓU a scalar, determining how ‘expensive’ the control input is. We have
implicitly assumed that the so-called ‘move horizon’ is 1, since simulations have shown that
only the immediate control input value U(n) is critical. The procedure is repeated at each
time step to compute U(n+1) and so on. More details on MPC and relevant control issues
can be found in [25].

The MPC algorithm relies critically on our ability to predict the future values of the output.
However, to predict these future values accurately we must have a precise estimate of the
future values of the rate disturbance (in addition to an accurate model and set of parameters).
This is very difficult in the presence of small-scale stochastic disturbances, but feasible in
the case of large disturbances caused by meals, when their specific exponential structure
(e.g. standardized Fischer meals) can be assumed: using the past input–output pairs and the
available model we can reconstruct the glucose rate disturbance. Then, with an empirically
determined threshold, we can sort out the large impulsive events caused by meals from the
non-meal disturbances. Apart from their exponential form, no other assumptions about the
magnitude or the timing of the meals need to be made. Figure 2 illustrates our ability to
estimate meal-related glucose disturbances. The observation that MPC can be successfully
applied during the time periods of meals but not during small stochastic disturbances is the
basic idea behind the switching approach.

Even though we consider a system described by a set of ordinary differential equations, our
approach is ‘input–output’ based rather than state-space based: we use the known model
structure and estimated parameters only to predict the effect of insulin on glucose. Our
control design utilizes only the output of the model (Y) and not the whole state vector (i.e.
the internal variables Iex, Ien, X, G); hence an estimation of the state at all times is not
necessary. At the beginning of every simulation run the MPC algorithm assumes that the
system is at equilibrium—this assumption might not hold of course. However, since our
analysis is not transient but steady-state (simulations of 48 h), the impact of the initial state
is very limited and does not affect the results and conclusions of this study.

Switching control strategy
The concept of a switching control strategy (SCS) comes naturally when trying to combine
the strengths and mitigate the weaknesses of the two approaches described above (PDC,
MPC), depending on the level of disturbance.

• During meals, when the effects of the bilinear term are significant and disturbance
is possible to predict, MPC can be employed since it is known to perform almost
optimally and carefully avoid hypoglycaemias. In our simulations we use a
prediction horizon of 90 min (30 samples) and no weighting (Γy is a unity vector),
in order to minimize the risk of hypoglycaemic events. The length of the prediction
horizon might seem too long since it is ‘common knowledge’ that the effect of IV
insulin on blood glucose has a time constant of 30–40 min. However, this does not
imply that there is no causal effect after this period. As another measure of
precaution against hypoglycaemia, we also use asymmetric weighting of the
predicted output vector, as in [4], whereby we penalize 10 times more the
deviations of the vector Y (n + p|n) that are below 80 mg/dl.

• In the presence of non-meal (small-scale) disturbances, when the nonlinear effects
are limited and disturbance is hard to predict, PDC is employed. The parameters
used here are Kp=0.8 and Kd=16. A comparison with the parameters of pure PDC
shows that we doubled the gain of the controller, or in other words, made the
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control action more aggressive. Note that using PDC during the long, non-meal
periods makes the computational burden of the algorithm much less compared to
the pure MPC case.

A switching scheme for the regulation of blood glucose has been proposed in a recent
computational study [16]. However, the similarities between two approaches are otherwise
limited: our algorithm, instead of solving Riccati equations and dynamic programming
problems, utilizes two widely used controllers for blood glucose with well-defined switching
points between them and is tested on a wide variety of diabetic cases.

A note on the issue of stability: the open-loop insulin–glucose model, with the nominal
parameter values used in this study, is stable. We can see this, either by linearizing around
the operating point and making use of Lyapunov’s linearization method or by simply noting
that the linear part of the model is stable and the nonlinearity (bilinear term) has a stabilizing
effect. In fact, one can extend this conclusion to the case when the parameters take values
within a wide range around the nominal ones. It is due to these strong stability properties of
the open-loop system that we avoid any discussion of closed-loop stability and the
consequent technical proofs. Instead, we focus on the issue of performance of the switching
control algorithm, which is far more critical in this problem.

4. RESULTS
Mild Type 2 diabetic/ICU case

In this section we try to emulate the case of mild Type 2 diabetics or patients in the ICU
with a need of continuous insulin therapy. These subjects have the ability to produce
significant amounts of endogenous insulin but of course less than what healthy subjects can.
Thus, we assume that β=0.054, which is half the normal value. The remainder of the
parameters retain their nominal values. All parameter values are assumed to be known to the
controllers. Note that in the case of the ICU, the MPC controller may be activated only on
the relatively rare occasions when the feeding infusion rate is changed (unless there are
internal reasons that change significantly the rate-disturbance signal).

Table I reports the averaged performance over 20 independent runs of 48 h of the SCS and
PDC. A comparison between the two demonstrates clearly the superiority of the control
strategy introduced in this study. Figure 3 presents the SCS in action: the top panel shows
the blood glucose without control (dashed line) and after switching control (solid line). The
dashed rectangulars on the time axis indicate the time periods when the SCS employs a
MPC action. The bottom panel shows the insulin infusions computed by the SCS.

Severe Type 2 diabetic case
In this section we take a look at the case of severe Type 2 diabetics: these subjects have the
ability to produce endogenous insulin but significantly less than what is needed to regulate
blood glucose. Thus we assume that β=0.01, which is about one-tenth the normal value. The
remainder of the parameters retain their nominal values and are known to the controllers.
Table III reports the average behavior of the two control strategies for 20 independent
simulations, of 48 h each. The performance indices of the SCS compare favourably with the
PDC case.

Type 1 diabetic case
In this section we try to emulate the case of Type 1 diabetics: these subjects cannot produce
any endogenous insulin at all and the regulation of their blood glucose depends solely on
exogenously infused insulin. We simulate this case by considering a value of β=0. The
remainder of the parameters retain their nominal values. All parameter values are again
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known to the controllers. Table IV reports the average behavior of the two control strategies
(PDC, SCS) for 20 independent simulations, of 48 h each. The results of Table IV indicate
that the SCS can be applied to Type 1 diabetics too, without degradation of performance or
risk of patients’ safety. Once more, the performance indices of the SCS compare favourably
with the PDC case.

To illustrate how the MPC part of SCS achieves attenuation of meal disturbances in Type 1
diabetics, we present this case in Figure 4. Besides the obvious improvement in performance
relative to the case without control, there are two more observations worth making: (a) the
SCS is able to fully attenuate the effects of a meal in less than 50 min and this should be
satisfactory considering how prolonged the effects of meals can be in Type 1 diabetics; (b)
the lowest values of glucose observed in Figure 4 are about 70 mg/dl (very close to the
lower bound of our target region), which indicates that the SCS can avoid the
hypoglycaemic undershoot that typically follows the attenuation of a meal using PD control.
Of course, there is a fundamental trade-off: more conservative tuning of the SCS raises the
lowest bound of the glucose values but also prolongs the time-period for attenuation of a
meal.

Plant-model mismatch case I
Here we examine the robustness of performance in the face of parametric uncertainty due to
inter-patient variability, intra-patient variability, or simply mis-estimation of parameters α, β
and p1, which determine the production of endogenous insulin and blood glucose clearance.
The range of random variations considered for these parameters is ±50% from their nominal
values and are not known to the controllers. The effects of the parametric uncertainty are
very limited for the SCS case, as demonstrated by comparing the results of Table II with
Table I. This indicates that SCS is robust in response to variations in the aforementioned
parameters. Similar conclusions apply for the PDC, except for one reported hypoglycaemic
event.

Regarding theoretical guarantees of robust performance of the closed-loop system under
SCS, the standard H∞ methodology does not appear promising, since it would require
simplifications/assumptions that are not deemed reasonable in this specific application
context. As the field of robust MPC of uncertain nonlinear systems advances, this question
should be explored—possibly in the direction suggested by a recently published paper [26].

Plant-model mismatch case II
A second case of plant-model mismatch is the widely studied (and of course very important)
case of Type 1 diabetes. The setting here is as follows: apart from the fact that we face a
Type 1 diabetic patient (hence β=0), the internal model of MPC has its parameters set =to
their nominal values. However, we allow the parameter p3 (which determines insulin
sensitivity) of the real system to take random values uniformly over the interval [5 × 10−6,
5×10−5]. These variations are unknown to the controller. Table V summarizes the results of
extensive simulations and shows that, although the performance is not as good as in Table
IV (this is to be expected since we are talking about parametric uncertainty of an order of
magnitude), SCS remains better than PDC and safe for the patients. Note that we have
considered a range of p3 values that are less than or equal to the nominal, because the
nominal value used in this study is the largest one that has appeared in the literature and,
thus, there is a higher probability that the controller will face systems with smaller, rather
than larger, values of p3.

Markakis et al. Page 8

Optim Control Appl Methods. Author manuscript; available in PMC 2011 April 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. DISCUSSION
The proposed switching control strategy gives very good results and performs much better
overall than PDC. Without changing its parameter values, the SCS can deal with Type 1
diabetes, Type 2 diabetes and ICU cases without degradation in performance or risk of the
patients’ safety. It is also significantly robust to a wide range of variations of crucial model
parameters.

An important observation has to do with the performance of the two control algorithms in
connection to the value of parameter p3: simulation results not presented here show that the
performance of the SCS remains unchanged for known variations in p3. In contrast, the
performance of PDC improves drastically as the value of p3 decreases (and the effect of the
nonlinearity becomes less drastic). When p3 is sufficiently small then the two algorithms
have roughly the same performance (in agreement with [4]).

We observe that the controllers considered in this study usually utilize amounts of insulin
from 8–12 U/day, which is less than what appears in the literature (50 U/day). This happens
for two reasons: (a) the amount reported does not include the basal exogenous infusion and
(b) we adopted a relatively high value for parameter p3, which means that less insulin is
needed to reject the same glucose disturbances.

Finally, one might expect that less severe diabetic cases would be in need of less exogenous
insulin, since part of the glucose regulation would be carried out by endogenously produced
insulin. However, comparing the values of exogenous insulin usage in Tables I-II we see
that this is not the case (apart from Table V, the need for exogenous insulin is more or less
the same for all diabetic cases examined). The reason behind this rather counter-intuitive
result is that endogenous insulin production (which is based on threshold nonlinearity)
occurs only when blood glucose exceeds θ=103 mg/dl and remains quite small as long as
blood glucose is in the normoglycaemic region. Thus, the presence of an effective controller
minimizes the effect of endogenous insulin on blood glucose.

Future work may extend these results in the non-stationary case that requires adaptive or
robust control strategies. Ongoing research examines more closely the case of unknown
variations in parameters determining insulin action (p2 and p3). Our future efforts should
also address the issue of predicting all the stochastic components of the rate disturbance
signal (not just meals) and, thus, allowing the application of a pure MPC strategy.
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Figure 1.
Closed-loop system for the regulation of blood glucose: R is the reference level, which is the
target value for the controlled blood glucose (in mg/dl), V is the measured error signal, i.e.
the noise-corrupted difference of Y from the constant level R (in mg/dl), N is the
measurement noise/errors (in mg/dl) and T is the sampling interval determined by the
glucose sensor (in min).
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Figure 2.
Glucose rate disturbance and its effect on blood glucose: the top panel shows a typical
pattern of the glucose rate disturbance signal employed in this study. The large ‘impulsive’
events are caused by meals. The center panel shows the estimate of the meal-related glucose
rate disturbances of assumed known exponential form. The bottom panel shows the
corresponding blood glucose fluctuations due to this rate disturbance, when only basal
insulin is externally delivered (β=0.054-nominal values for the other parameters).
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Figure 3.
The switching control strategy in action: the top panel shows the blood glucose levels
corresponding to the general stochastic disturbance signal, with basal insulin infusion only
(dashed line) and after SCS action (solid line). The mean value (MV), standard deviation
(SD) and the percentage of time that the glucose is found outside the normoglycaemic
region of 70–110 mg/dl (PTO) are reported between the panels for SCS (values to the right
of ‘→’) and without control action (values to the left of ‘→’). The dashed rectangular on the
time axis determines the periods of time when MPC is switched on. The bottom panel shows
the insulin profile determined by the SCS (the average insulin usage is 11.2 U/day in this
case).
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Figure 4.
Attenuation of meal disturbances with switching control: the top panel shows the blood
glucose levels corresponding to three meals, with basal insulin infusion only (dashed line)
and after SCS action (solid line). The bottom panel shows the amounts of infused insulin
used by the SCS.
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Table II

Averages of 20 independent runs over 48 h each when α∈[0.11,0.33], β∈[0.027,0.081] and p1 ∈
[0.0045,0.0135] (random values, uniformly distributed).

No control PDC SCS

MV 125.5 105.2 99.8

SD 38.7 27.1 22.8

PTO 61.8 24.2 13.6

INSULIN/DAY 0 8.2 10.5

HYPO 0 1 0
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Table III

Averages of 20 independent runs over 48 h each when β=0.01 (severe Type 2 diabetic patients).

No control PDC SCS

MV 165.1 110.3 101.7

SD 59.3 28.2 23.2

PTO 93.6 32.7 15.6

INSULIN/DAY 0 9.5 11.9

HYPO 0 0 0
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Table IV

Averages of 20 independent runs over 48 h each when β=0 (Type 1 diabetic patients).

No control PDC SCS

MV 225.1 111.4 101.9

SD 85.4 28.7 23.4

PTO 97.1 35.7 16

INSULIN/DAY 0 9.9 12.1

HYPO 0 0 0
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Table V

Averages of 20 independent runs over 48 h each when β=0 and p3 ∈[5·10−6, 5·10−5] (random values,
uniformly distributed).

No control PDC SCS

MV 221.8 117.4 112.1

SD 84.6 31.8 28.9

PTO 97.3 49.9 35.3

INSULIN/DAY 0 12.1 18.0

HYPO 0 1 0
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