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Garde, Smita, Michael G. Regalado, Vicki L.
Schechtman, and Michael C. K. Khoo. Nonlinear dynam-
ics of heart rate variability in cocaine-exposed neonates
during sleep. Am J Physiol Heart Circ Physiol 280:
H2920-H2928, 2001.—The aim of this study was to deter-
mine the effects of prenatal cocaine exposure (PCE) on the
dynamics of heart rate variability in full-term neonates dur-
ing sleep. R-R interval (RRI) time series from 9 infants with
PCE and 12 controls during periods of stable quiet sleep and
active sleep were analyzed using autoregressive modeling
and nonlinear dynamics. There were no differences between
the two groups in spectral power distribution, approximate
entropy, correlation dimension, and nonlinear predictability.
However, application of surrogate data analysis to these
measures revealed a significant degree of nonlinear RRI
dynamics in all subjects. A parametric model, consisting of a
nonlinear delayed-feedback system with stochastic noise as
the perturbing input, was employed to estimate the relative
contributions of linear and nonlinear deterministic dynamics
in the data. Both infant groups showed similar proportional
contributions in linear, nonlinear, and stochastic dynamics.
However, approximate entropy, correlation dimension, and
nonlinear prediction error were all decreased in active versus
quiet sleep; in addition, the parametric model revealed a
doubling of the linear component and a halving of the non-
linear contribution to overall heart rate variability. Spectral
analysis indicated a shift in relative power toward lower
frequencies. We conclude that 1) RRI dynamics in infants
with PCE and normal controls are similar; and 2) in both
groups, sympathetic dominance during active sleep produces
primarily periodic low-frequency oscillations in RRI, whereas
in quiet sleep vagal modulation leads to RRI fluctuations that
are broadband and dynamically more complex.

autonomic function; cardiovascular control; infants;
modeling

PRENATAL COCAINE EXPOSURE is believed to affect infant
heart rate control and sleep-wake state organization.
However, the number of studies that have investigated
these effects are few, and the conclusions that have
been drawn from the various data pools remain ambig-
uous (20). On one hand, some studies (21, 33) have

found mean heart rate to be elevated and heart rate
variability (HRV) to be reduced in infants with prena-
tal cocaine exposure. On the other hand, a recent study
(23) found reduced median heart rates and increased
HRYV in cocaine-exposed neonates relative to controls.
Spectral analysis of these data has shown that the
higher HRV is due to increases in spectral power across
all frequency bands in quiet sleep and increases in
spectral power in the low-frequency (0.03—0.1 Hz) and
mid-frequency (0.1-0.2 Hz) bands in active sleep (24).
These results differ somewhat from the study of Oriol
et al. (21), which found a significant reduction in high-
frequency power.

The apparent discrepancy among these previous
findings may be due in part to differences in the devel-
opment of the subject groups that were studied as well
as to the difficulty of controlling and determining the
amount of prenatal cocaine exposure. Another possibil-
ity is that summary statistics and linear measures of
heart rate dynamics may not be sufficiently sensitive to
uncover differences in cardiovascular function between
infants with prenatal cocaine exposure and controls
without prior prenatal cocaine exposure. There may
well be more subtle differences that become detectable
only through methods that have the capability of char-
acterizing the nonlinear aspects of the underlying dy-
namics. A number of studies (9, 11, 29) have suggested
that the irregular behavior found in HRV may be a
manifestation of deterministic chaos: complex dynam-
ics that arise from nonlinear interactions among the
many mechanisms that control or influence heart rate.
However, other studies (7, 14), applying more stringent
mathematical tests for chaos, found no evidence to
support this hypothesis, although these researchers
did find significant nonlinear correlations in the data.
Recent findings by some groups (6, 13) suggest further
that the irregular dynamics of HRV may be due in
large part to stochastic influences.

In this study, we applied a variety of computational
techniques to determine whether there are differences
in the nonlinear dynamics of HRV of cocaine-exposed
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HEART RATE VARIABILITY IN COCAINE-EXPOSED NEONATES

neonates and age-matched controls. We further hy-
pothesized that the fluctuations in R-R interval (RRI)
in both groups of neonates can be modeled as the
output of a dynamic deterministic feedback system
with stochastic noise as a possible perturbing input.
Employing this structural framework, we sought to
determine whether the dynamics of the feedback sys-
tem could be adequately characterized by a linear
model or whether it was necessary to include nonlinear
contributions. Furthermore, this model allowed us to
estimate the relative contributions of deterministic
versus stochastic components to overall HRV in these
two groups of infants during quiet and active sleep.

METHODS

Subjects. We studied 12 normal neonates and 9 infants
with prenatal cocaine exposure. All infants were products of
single births by vaginal delivery with birth weights of >2,500
g and Apgar scores at 5 min of >7. The birth weights of the
two groups of infants [controls 3,415 + 130 g (SE) vs. cocaine-
exposed 3,528 *= 236 g] were not significantly different. All
subjects were studied at 2 wk postpartum. The mothers of all
the subjects were single African-American and Hispanic
women. Cocaine exposure was determined by maternal self-
report or neonatal toxicological urinalysis (EMIT procedure)
in the perinatal period. Histories of current and past cocaine
(reported in terms of frequency of use during each trimester
of pregnancy), alcohol (reported as absolute ounces of alcohol
per week during each trimester), and tobacco (reported as
mean number of cigarettes per week during each trimester)
use were taken from each woman at the time of the sleep
recording according to the recommendations of Day et al. (8).
The Obstetric Complications Scale (17) was completed for
each participant. Mothers of the control infants tested nega-
tive for cocaine and were selected from the same population
of single African-American and Hispanic women. Radioim-
munoassay of the mothers’ hair (3) was used to verify cocaine
exposure and the lack thereof in the cocaine group and the
control group, respectively. The study was approved by the
institutional review board of the King-Drew Medical Center
(Los Angeles, CA), and each participating mother gave writ-
ten informed consent.

Measurements and data preprocessing. Four-hour daytime
recordings of the electrocardiogram (ECG) were obtained
from the infants during spontaneous sleep and wakefulness.
These recordings were made between 0900 and 1500 hours.
Each 1-min epoch (of a total of ~240 epochs) was classified as
quiet sleep, active sleep, indeterminate sleep, or waking on
the basis of behavioral criteria using a previously reported
protocol (25). The intervals between successive R waves of
the ECG (RRI) were determined with 1-ms accuracy by
subtracting the time of each R wave from the time of the
previous R wave. In each subject, we selected for analysis two
artifact-free segments of RRI data of ~1,000 beats (8—10
min) duration each; one of these was from quiet sleep and the
other was from active sleep. Care was taken to ensure that no
state changes occurred within a given segment. Segments
representing wakefulness were not included in our compari-
sons because we were unable to find a sufficiently large
number of data segments (containing 1,000 contiguous beats)
that were free of artifacts. During wakefulness, there was
frequently crying or other behavioral activities that produced
motion artifacts in the ECG recordings.

All the data sets were first linearly detrended. To test
further for stationarity, each detrended data set was divided
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into segments of 1-min duration, and the means and stan-
dard deviations of the RRI in each segment were computed.
Subsequently, for each subject, we applied one-way repeated
measures analysis of variance to determine if there were
significant differences among the segment means; the same
procedure was applied to the segment standard deviations.
We found no intersegmental differences in either means or
standard deviations in the selected data sets, suggesting that
all the time series to be analyzed were stationary.

Spectral analysis. A linear interpolation algorithm was
first used to convert the RRI into equally spaced measures of
heart rate with a new sampling rate of 16 Hz (4). After linear
detrending, the power spectrum of HRV was computed from
each data segment using the prewhitened autoregressive
spectral analysis method of Birch et al. (5). Briefly, this
procedure involved the following steps: fitting an autoregres-
sive model to the data; determining the residuals between
the measurements and the model predictions; computing the
spectrum of the residuals via fast Fourier transform; and,
finally, filtering the residuals spectrum with the autoregres-
sive model to obtain the spectrum of variations in RRI. It
should be noted that a relatively high resampling rate (16
Hz) was required to obtain good frequency resolution in the
resulting spectrum, because this algorithm required the fast
Fourier transform of the residuals. Before the spectral com-
putations, a preliminary analysis showed that an autoregres-
sive model of order 10 was adequate for fitting the data.

We obtained compact descriptors of the spectral character-
istics of HRV by deducing the power contained in specific
frequency bands. These bands were as follows: low-frequency
power (LFP), between 0.03 and 0.1 Hz; mid-frequency power
(MFP), between 0.1 and 0.2 Hz; and high-frequency power
(HFP), between 0.3 and 2 Hz. To gain further insight into the
relative contributions of the sympathetic and parasympa-
thetic nervous systems to cardiac autonomic control, we com-
puted the low-to-high frequency ratio (LHR), defined as

LFP + MFP

LHR = HFP

(1)

LHR has been used to represent sympathovagal balance, so
that an increased value would reflect greater sympathetic
modulation and/or reduced vagal modulation of heart rate
(31). We also computed the normalized high-frequency power
(NHFP), a commonly accepted index of parasympathetic
modulation of the heart (31), by dividing HFP by the total
spectral power between 0.03 and 2 Hz. Total HRV was
assessed by computing the standard deviation (SDRR) of
each data set after removal of any linear trend.
Approximate entropy. Approximate entropy (ApEn) is de-
fined as the logarithmic likelihood that the patterns of the
data that are close to each other will remain close for the next
comparison with a longer pattern. Thus ApEn provides a
generalized measure of regularity. A deterministic signal
with high regularity has a higher probability of remaining
close for longer vectors of the series and hence has a very
small ApEn value. On the other hand, a random signal has a
very low regularity and produces a high ApEn value.
To compute ApEn of each data set, m-dimensional vector
sequences [x(n)] were constructed from the RRI time series
x(n) = [RRI(n), ... RRI(n + m — 1)] (2)

where the index n can take on values ranging from 1 to N —
m + 1 and N is the total number of data points in the RRI
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time series. If the distance between two vectors x(i ) and x(j),
is defined as d[x(i),x(j)], then we have

N-m+1)
"(r)=(N-m+171 >

i=1

In C7(r) (3a)

where C7(r) = {number of x(j) such that d[x({), x(j)] =
r}/(N — m + [) and r is the tolerance ApEn (m,r,N) is then
defined as follows
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linear, and CD was computed as the slope of the curve in this

region

op _ dllog C)]
d(logr)

The dimension m of the reconstructed vectors was selected by
applying the method of false nearest neighbors (26). For the
embedding time lag 7, we chose the value of one beat, because
this was the natural time scale of the RRI time series (2). We

(6)

ApEn(m, r, N) = —[®" " (r) — ®"(r)]
= — Average over i of In [conditional probability that

|RRI(j + m) — RRI(i + m)| =r, given that

(30)

IRRI( + k) — RRIG + k)| =r,fork =0,1,2,...m — 1]

The selection of the parameter m was made such that the
conditional probabilities defined in Eq. 3a could be estimated
with reasonable accuracy from 1,000 data points. On the
basis of the work of Pincus et al. (22), this suggested two
possibilities: m = 2 and m = 3. The tolerance r was chosen
such that it was larger than most of the noise but, at the
same time, not so large that detailed information about the
system dynamics would be lost. We found values of r ranging
between 10 and 20% of SDRR to be adequate from this
perspective.

Correlation dimension. The correlation dimension (CD)
describes the dimensionality of the underlying process in
relation to its geometrical reconstruction in phase space. We
estimated CD using an approach based on the Grassberger-
Procaccia algorithm (10). From the RRI time series, the
following m-dimensional time-lag vectors were first con-
structed

7z, = [RRIG — 1), ... RRIG — m7)] 4)

where 7 is the embedding lag. For each of the vectors z; we
computed the distances z; — z; to all the remaining vector
points z;, excluding those that were close because of temporal
correlations (15). The number of data points within a dis-
tance r in the phase space for each vector was counted, and
this is counted for all z;. The correlation integral C(r) is
given by

1 N N
C(r) B (N - T]mm)(N ~ MNmin — 1) E E e(r B |Zi B zj|) (5a)

i=1 =i+ Mmin

where mmin is the average correlation time (expressed in
units of the number of data points), defined as the time taken
for the autocorrelation function to first decay to 1/e. 6(u) is the
Heaviside function, defined as

0(u)=1ifu>0 (5b)
=0ifu<0

C(r) was computed for a range of values of distances r, and,
subsequently, log C(r) was plotted against log r. A scaling
region was chosen in which this curve was approximately

also repeated our analyses with embedding lags of up to six
beats (corresponding to the first zero crossing of the autocor-
relation functions in most of our data sets), but these did not
alter the relative differences of CD among subject groups and
sleep states.

Nonlinear predictability. Nonlinear predictability provides
a means for detecting determinism in any given time series.
Predictability is low for a stochastic time series regardless of
how far in the future one tries to predict. On the other hand,
a periodic signal is highly predictive. With a chaotic signal or
a correlated noise sequence, predictability would be high in
the immediate future, but with increasing time steps, predic-
tive capability would decrease significantly.

In this study, we employed a modification of the Sugihara
and May method (30). Time-delay vectors were first recon-
structed from each RRI signal using the procedures described
earlier. The embedded sequence was divided into equal
halves, of which the first half was used as the library pattern
to make predictions about the behavior of the second half.
For a given vector z, (“predictee”) selected from the second
half of the time series, the m + 1 vectors located closest (in
Euclidean distance) to it were determined from the library
patterns so that the predictee was contained in the smallest
simplex formed by the m + 1 neighbors. The predicted value
of the predictee p time steps ahead, x; . ,, was determined by
following the time evolution of each of the m + 1 closest
neighbors. If x; and x¥’ (j = 1...m + 1) represent the first
coordinates of each of the m + 1 closest neighbors at the
current time and after p time steps, respectively, then

m+ 1

’ — (p)
Xivp = E W;x;

j=1

(7a)

where the weights w; were chosen to be inversely propor-
tional to the distances between each of the m + 1 closest
neighbors and the predictee vector z,, i.e.

m+1

1 1

‘xj — |xj — x|

Jj=1

(7b)

m+1
where E w;=1

Jj=1
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As a measure of (non)predictability, we computed the nor-
malized mean square error (e2). Between the one step ahead
(p = 1) prediction and its corresponding data value

ezzg(xzﬂ_xj?)z (7¢)
2 (x, = X)

where ¢ is the time index of the predictee, and x is the mean

value of x.

Detection of nonlinearity using surrogate data. The preced-
ing measures of nonlinear dynamics can be easily corrupted
by the presence of stochastic noise. The surrogate data tech-
nique provides a means for testing the statistical significance
of each computed measure. We employed the amplitude-
adjusted Fourier transform algorithm (32) to generate surro-
gate data sets from the original time series. Here, the origi-
nal data set was first rescaled so that the distribution became
Gaussian. Surrogate data sets of the same length were then
generated from this rescaled time series by randomizing the
phase components of its Fourier transform while preserving
the magnitude of the spectrum. Finally, the Gaussian surro-
gates were rescaled back to the original amplitude distribu-
tion of the data.

For each of the estimated measures of nonlinear dynamics,
we computed the significance level (o) as

_ |Qr - “’surr| (8)

O surr

where @, is the parameter value for the real data, and psurr
and Osurr are the mean and variance of the surrogates,
respectively. A significance level >2 implied that we could
reject the null hypothesis that the computed measure re-
flected linear correlations within the time series being ana-
lyzed.

Parametric models. In addition to detecting nonlinearity in
the underlying dynamics of HRV, we were also interested in
determining the extent of the nonlinearity present. To quan-
tify the degree of nonlinearity, we turned to parametric
modeling. Figure 1 shows two possible model structures, both
assuming delayed feedback, that can produce the dynamic
fluctuations observed in the RRI time series. Model A as-
sumes that the feedback dynamics are constrained to be
linear, whereas in model B the dynamics of the feedback
block are nonlinear. In model A, aperiodic fluctuations in RRI
can only be produced when the feedback system is driven by
a stochastic noise input. In contrast, in model B, aperiodic
fluctuations in RRI can arise with or without any noise
perturbation if the system dynamics are chaotic. The feed-
back structure inherent in both models encapsulates all the
deterministic correlation between the present RRI and past
changes in RRI. Thus both models represent the totality of all
physiological mechanisms that can affect HRV, including
respiration. The stochastic noise that enters these systems
represents the combined effects of random fluctuations in
autonomic neural modulation of heart rate, cardiac contrac-
tility, peripheral circulatory resistance, and blood pressure
as well as transient variations in sleep-wake state (mi-
croarousals).

Model A was represented mathematically by the autore-
gressive equation

ARRL, = ¢;ARRI, ; + aARRI, ,+ ---azARRI, x+e, (9)

where ARRI, represents the change in RRI at beat n from the
mean RRI of the data set in question, e,, is the residual error
between the nth measurement and the corresponding model
prediction, a; represents the i th model coefficient (1 =i = K),
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Model A

Stochastic o 4RR‘::
noise
+
Linear
Dynamics
Model B
| ARRI
Stochastic 4+ —~ >
noise Y
+
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L] Nnn[1i1?a1'
Dynamics :

Fig. 1. Parametric models for underlying dynamics of heart rate
variability. Top: model A, linear model; bottom: model B, nonlinear
model. ARRIL,, change in R-R interval (RRI) at beat n from the mean
RRI of the data set in question.

and K is the model order. In model B, we assumed the
nonlinear feedback structure to take the form of a d-degree
polynomial function

ARRI, = ¢,ARRI, , + a,ARRI, , + azARRI,
+-+-ag ARRI®_, + ag.,ARRI, ,ARRI, ,
+ - ayARRIY , + ¢,

(10)

M is the total number of unknown parameters to be esti-
mated in Eq. 10, where

:(K+d)!

Tk (11)

In model B, K was assumed to be equal to the embedding
dimension (1), which we computed using the false nearest
neighbor algorithm (26). The coefficient a; (I =i = M) was
estimated from the RRI signal using the Korenberg method
(16), which employs a recursive Gram-Schmidt procedure for
orthogonal expansion. With the use of simulated data, Ko-
renberg (16) showed that this algorithm produces reliable
estimates of the expansion coefficients for data sets of 1,000
points with noise levels as large as 32% of signal amplitude.
In both models, the total number of model parameters to
be estimated, M (note that K = M in model A), was deter-
mined by increasing the number of terms in Egs. 9 or 10 until
the following information criterion (IC) (1) was minimized

1 N
IC(M) = log NZ e

n=1

+ M/N (12)



H2924

HEART RATE VARIABILITY IN COCAINE-EXPOSED NEONATES

Table 1. Values for estimated parameters in control and prenatal cocaine-exposed

infants in quiet and active sleep

Cocaine Group

Control Group

Estimated

Parameter Quiet sleep Active sleep Quiet sleep Active sleep
Mean RRI, ms 460.90 438.10 435.00 429.9583
SDRR, ms 12.06 +1.90 22.60+1.73 9.87+1.26 19.64+2.04
NHFP 0.307=0.061 0.073+0.029 0.314+0.047 0.052 +0.005
LHR 1.52+0.60 9.78+1.91 2.23+1.18 9.56 +1.21
ApEn 4.90+0.40 2.60+0.32 4.48+0.43 3.49+0.39
CD 4.24 +0.66 3.28 £0.34 4.21+0.47 3.39+0.54
Prediction error 0.49+0.06 0.32+0.07 0.40+0.14 0.17+0.02

Values are means = SD. RRI, R-R interval; SDRR, standard deviation of each data set; NHFP, normalized high-frequency power; LHR,
low-to-high-frequency ratio; ApEn, approximate entropy; CD, correlation error.

The percent contribution to total variance (CTV) in the data
for both models was defined as follows
N

E (ARRIELredicted)Z
CTV _ n=1 -
> ARRI?
n=1

X 100 (13)

Once the optimal model order (for model B) was determined, the
variance of the residuals (e,) was taken to represent the sto-
chastic contribution to total variance in the data. Thus the
variance of €, provided an estimate of the magnitude of the
noise input driving the feedback model (Fig. 1, bottom; model B).

Statistical analysis. Two-way repeated measures analysis of
variance was employed, with subject group (control vs. cocaine)
as one factor and sleep state (quiet sleep vs. active sleep) as the
repeated factor. A Student-Newman-Keuls test was employed
for post hoc multiple pairwise comparisons if statistical signif-
icance was indicated by the analysis of variance. All statistical
tests were implemented using SigmaStat/Windows (Jandel Sci-
entific; San Rafael, CA). The level of significance was set at P =
0.05 unless otherwise stated. In addition, each of the indexes of
nonlinear dynamics (i.e., ApEn, CD, and nonlinear predictabil-
ity) was tested in every subject for significance by computing o
in Eq. 8 and determining whether the computed value was >2.

RESULTS

Spectral analysis. Table 1 shows the values for the
estimated parameters in the two groups of infants in

quiet and active sleep. Mean RRI in both groups of
infants was not significantly different. There were no
group differences in SDRR, LHR, and NHFP. However,
NHFP was significantly higher in quiet sleep compared
with active sleep in both groups (P < 0.001). At the
same time, LHR and SDRR were each higher in active
sleep relative to quiet sleep (P < 0.001 for both).
Approximate entropy. ApEn was not significantly
different between the two groups regardless of which
combinations of parameters (m = 2 or 3 and r = 10 or
20%) were employed. However, ApEn was higher in
quiet sleep compared with active sleep (P < 0.001). The
results for the individual subjects for m = 2 and r =
10% are presented graphically in Fig. 2 (cocaine sub-
jects are shown as filled circles, whereas the controls
appear as open squares). For each subject, the ApEn
value deduced from data (horizontal axis) has been
plotted against the mean ( *2c¢ confidence intervals,
shown as error bars; vertical axis) of the corresponding
ApEn values for the 10 sets of surrogates generated
from the original time series. Significance levels for the
difference in ApEn between the measured RRI and the
corresponding surrogate data were >2 in virtually all
subjects in both groups and states. In Fig. 2, this result
is represented by the fact that almost all the circles and
error bars lie above the line of identity, which is the
graphical correlate of the null hypothesis. Thus ApEn

A B
6 ! ] ' 6 -
[) L]
g : 2
234 1 I E‘”‘! E ¥4
Fig. 2. Results of approximate entropy anal- & a | ) ﬁﬁ!
ysis. A: quiet sleep; B: active sleep. B
2 § 2 1 : te
o Cocaine group ®  Cocaine group
o Control group o Control group
0 _ — T J T O . T T T
0 2 4 6 0 7 4 6
Data Data
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Fig. 3. Results of correlation dimension
analysis. A: quiet sleep; B: active sleep.
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values were found to be lower than what would have
been expected if the dynamics of the RRI fluctuations
reflected only linear correlations. In other words, the
time series of all subjects showed a greater degree of
regularity as a consequence of nonlinear correlations in
the data.

Correlation dimension. The estimated values of CD
for the two infant groups in the two sleep states are
displayed in Table 1. Group differences were not sig-
nificant. However, CD was higher in quiet sleep com-
pared with active sleep in both groups (P < 0.001).
Figure 3 shows the estimated CD values plotted
against their corresponding surrogate data values. The
surrogate data show higher CD values than the RRI
signal itself in both states. The significance factor of
this difference in the original data and the surrogate
data was >2c for both groups, indicating the contribu-
tion of nonlinear correlations in the signal.

Prediction analysis. The normalized variance of the
error between the one-step-ahead predictions and their
corresponding data values was higher in quiet sleep
versus active sleep (P < 0.001) but was not signifi-
cantly different between the cocaine and control sub-

B

1.0 1.0

jects (Table 1). Individual prediction errors are plotted
against the corresponding prediction errors estimated
from the surrogate data sets in Fig. 4. In most of the
cases, prediction error is larger in the surrogate data
relative to the prediction error deduced from the orig-
inal data sets, implying again that the nonlinear con-
tribution to the underlying dynamics was significant in
both groups of infants in both sleep states.
Parametric model. The number of autoregressive
terms that minimized the cost function (Eq. 12) for
model A ranged from 7 to 14. In model B, the “opti-
mum” model order contained 36—43 terms, which gen-
erally included linear, second-degree, and some third-
degree terms. Figure 5 shows the percent CTV for
model A (top) and model B (bottom) in each individual
data set. Statistical analysis showed that there were no
differences in CTV between subject groups. However,
CTV increased substantially (P < 0.001) from model A
to model B in both sleep states. Furthermore, there
was a significant state versus model interaction (P <
0.001). In quiet sleep, the linear model (model A) was
able to account for 31.6 = 5.1% of the dynamic fluctu-
ations in RRI in the cocaine group and 32.6 = 5.2% in

0.8 - } i

f EMm

0.4

Surrogate
(=1
@
JR L=
Il
o=
Surrogate
=)
m

0.2 0.2 4

—e—i
g
o

®  Cocaine group
o Control group

0.0 0.0 +

Fig. 4. Results of nonlinear prediction analy-
sis shown as the normalized mean squared
error. A: quiet sleep; B: active sleep.
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a  Control group

0.0 02 04 06 08 1.0 00 0.2 0.4
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Fig. 5. Results of parametric models shown as percent
contribution to total variance. Top: model A, linear
model; bottom: model B, nonlinear model.
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the control group, whereas in active sleep the linear
CTV increased to 65.7 = 3.3 and 65.2 = 2.1%, respec-
tively. In quiet sleep, CTV for the nonlinear model was
81.5 = 4.7 and 76.6 = 3.5% in the cocaine and control
groups, respectively. These contributions remained lit-
tle changed in active sleep at 85.6 + 2.5 and 89.9 =+
1.0%, respectively. Because model B also includes lin-
ear terms, these results imply that the nonlinear con-
tribution to RRI dynamics in quiet sleep was substan-
tially larger than that in active sleep. However, there
were no differences in nonlinear contributions between
infant groups.

DISCUSSION

Two findings emerged with great consistency in this
study. First, there was a substantial amount of inter-
subject variability in all the measures of linear and
nonlinear dynamics that were estimated. Second, we
could find no significant differences in ApEn, CD, non-
linear predictability, or any of the spectral measures
between a group of neonates with prenatal cocaine

MODEL A
Quiet Sleep Active Sleep
° O
°
) @]
O .
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exposure and a group of age-matched controls. The
second finding could well be a consequence of the first:
a large degree of intersubject variability can easily
mask small differences in heart rate dynamics between
the groups. It should be emphasized that the large
intersubject variability was found not only in the co-
caine-exposed group but also in the control group. Thus
it appears that any alterations in heart rate dynamics
in cocaine-exposed neonates are likely to be too subtle
for detection even by nonlinear techniques unless
much larger sample sizes are employed. This could
explain why previous studies using spectral analysis of
HRV have arrived at differing conclusions. For in-
stance, Mehta et al. (19) reported a significantly lower
LHR and higher NHFP in 21 cocaine-exposed neo-
nates, suggesting enhanced parasympathetic activity.
Oriol et al. (21) found reduced overall HRV, LFP, and
HFP in a group of five cocaine-exposed neonates rela-
tive to normal controls, which suggested increased
sympathetic tone. On the other hand, they did not find
significant differences in ApEn between the groups.
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Another confounding factor could be the possible influ-
ence of nonstationarity in these previous studies. In
the Mehta et al. study (19), the spectral analysis re-
sults appear to have been based on data derived from
Holter recordings of 22 h or more. Comparison of spec-
tral indexes of HRV between the cocaine infants and
controls was performed without consideration of the
sleep-wake state. In the Oriol et al. study (21), the data
segments analyzed were similar in length (~10 min) to
ours. However, only visual inspection was employed to
determine stationarity of the data, whereas in our
present study we applied statistical testing to rule out
any nonstationary behavior.

In our previous analysis of a larger group of 15
cocaine-exposed neonates and 13 controls (inclusive of
the subjects studied here), the cocaine infants showed
enhanced HRYV, reflected by an increase in spectral
power across all frequency bands during active sleep;
however, in quiet sleep, only HFP was higher (24). The
discrepancy between these results and our present
findings may be due in part to the slightly larger
sample size employed in the previous analysis. In the
present study, we were constrained to use only a subset
of the overall database because, in some of the subjects,
we were not able to find contiguous periods of at least
eight (1 min) epochs of quiet or active sleep. The dis-
crepancy may also be related to methodological differ-
ences between our previous and present analyses. In
the previous study, spectral estimates were computed
on an epoch-by-epoch basis. These epochs were classi-
fied into one of the following four states: quiet sleep,
active sleep, indeterminate sleep, and wakefulness.
Subsequently, the median value deduced from all ep-
ochs in each state was taken to be representative of the
spectral estimate in that state for a given subject. No
attention was paid to whether these median values
reflected heart rate dynamics during relatively stable
and extended periods of a given sleep state. In contrast,
in the present study, care was taken to ensure that the
data analyzed were extracted from sections in which
there were 8—10 contiguous epochs (1 min) of either
quiet or active sleep; furthermore, we were careful to
test these data segments for stationarity. Because
sleep organization is known to be altered in cocaine-
exposed infants (25), it is possible that the conclusions
arrived at in our previous study may have been af-
fected by the cardiorespiratory effects of transitions
between states. If this was indeed the case, our present
findings would suggest that the primary effect of pre-
natal cocaine exposure is the disorganization of sleep
architecture and that any observed differences in heart
rate control are secondary to these alterations in sleep-
state patterning.

Application of the surrogate data method to our
estimates of ApEn, CD, and nonlinear predictability
showed that there was a significant nonlinear deter-
ministic component in the HRV of both groups of neo-
nates during quiet and active sleep. Parametric mod-
eling confirmed this finding and, furthermore, allowed
us to quantify the relative contributions of the linear
and nonlinear components of the underlying dynamics.
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Our results suggest that the dynamic fluctuations in
RRI in both cocaine-exposed and control infants can be
modeled as the output of a deterministic nonlinear
delayed-feedback system with stochastic noise as the
perturbing input (“model B”). In both infant groups,
the nonlinear system was of relatively low order, con-
taining lagged products of ARRI up to only the third
degree. We found that the combined contributions from
linear and nonlinear correlations accounted for be-
tween 65 and 99% of the total variance in the data,
which meant that in some cases the direct contribution
from stochastic noise was as low as 1%. This suggests
that, in some of the data sets, the dynamics of HRV
may have been chaotic. To test this possibility further,
we estimated the largest Lyapunov exponents of these
data sets using the method of Rosenstein et al. (27),
with the presumption that the presence of a positive
characteristic exponent would indicate chaos. We
found that these exponents were positive but not sig-
nificantly different from the Lyapunov exponents com-
puted from the corresponding surrogate data. Thus the
determination of whether chaos was present or not was
inconclusive. This highlights a major limitation of cur-
rent methods of nonlinear dynamical analysis: the sen-
sitivity to noise of estimates derived from relatively
short (<10,000 points) data sets.

One feature that was continually affirmed in all our
computational tests was the clear difference in heart
rate dynamics between quiet sleep and active sleep
regardless of infant group. Overall HRV was higher in
active sleep. NHFP was lower and LHR was higher in
active sleep versus quiet sleep, indicating a shift in
relative dominance of LFP versus HFP in HRV. All
measures of nonlinearity, such as ApEn, CD, and non-
linear prediction error, decreased in active sleep, indi-
cating a reduction in complexity and an increase in
regularity in heart rate dynamics. Furthermore, para-
metric modeling showed that, in percent terms, the
linear contribution to HRV was approximately doubled
in active sleep, whereas the nonlinear contribution was
reduced by roughly one-half. These results are con-
sistent with previous findings that sympathetic
modulation of heart rate is enhanced during active or
rapid-eye movement sleep, whereas parasympathetic
activity is decreased; conversely, in synchronized or
quiet sleep, vagal modulation predominates (12, 18).
Furthermore, sympathetic modulation leads to dy-
namic variations of heart rate that are predominantly
periodic and in the low-to-mid-frequency range; in con-
trast, vagal modulation of heart rate produces broad-
band fluctuations that are dynamically more complex
and much less predictable. There are a number of
possible reasons why HRV assumes the form of low-
frequency periodicities during sympathetic dominance
in active sleep. First, the sinoatrial node can only track
changes in sympathetic activity that are slower than
0.15 Hz, whereas vagal activity can modulate heart
rate to much higher frequencies (28). Sympathetic
modulation of changes in vascular resistance is also
slow, on the order of several seconds. With increased
sympathetic gain, these delays in the baroreflex control
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system can lead to oscillatory activity mediated by
feedback instability. A less likely, but nevertheless
plausible, explanation is that sympathetic dominance
during active sleep leads to a filtering out of high-
frequency activity, thereby unmasking the low-
frequency oscillation that is intrinsic to central rhyth-
mic modulation of neural activity (18).
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