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Abstract—The dentate gyrus is the first region of the
hippocampus that receives and integrates sensory informa-
tion (e.g., visual, auditory, and olfactory) via the perforant
path, which is composed of two distinct neuronal pathways:
the Lateral Perforant Path (LPP) and the Medial Perforant
Path (MPP). This paper examines the nonlinear dynamic
interactions among arbitrary stimulation patterns at these
two afferent pathways and their combined effect on the
resulting response of the granule cells at the dentate gyrus.
We employ non-parametric Poisson–Volterra models that
serve as canonical quantitative descriptors of the nonlinear
dynamic transformations of the neuronal signals propagating
through these two neuronal pathways. These Poisson–
Volterra models are estimated in the so-called ‘‘reduced
form’’ with experimental data from in vitro hippocampal
slices and provide excellent predictions of the electrophysi-
ological activity of the granule cells in response to arbitrary
stimulation patterns. The data are acquired through a
custom-made multi-electrode-array system, which stimulated
simultaneously the two pathways with random impulse trains
and recorded the neuronal postsynaptic activity at the
granule cell layer. The results of this study show that
significant nonlinear interactions exist between the LPP and
the MPP that may be critical for the integration of sensory
information performed by the dentate gyrus of the hippo-
campus.
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INTRODUCTION

The hippocampus receives and integrates neuro-
nal activity from multiple brain regions that are
involved in processing different modalities of sensory
information, especially in the context of learning and

memory.38,47 The primary function of the hippocam-
pus is to form mnemonic labels that identify a unified
collection of features to create semantic and temporal
relations between multiple collections of features.6,24

The different modalities of sensory information prop-
agate through synaptic connections to converge onto a
population of common postsynaptic neurons. These
synaptic connections and the complex interactions of
the sensory information are critical for the integrative
functions of the hippocampus. However, due to the
complexity and intrinsic nonlinearities of these inter-
actions, the synaptic connections and the interactions
of the different types of sensory information have not
been adequately studied in the literature. A few
researchers have attempted to model the multi-input
interactions in the central nervous system35,50 and
other parts of the body,15,18,44 while others have
investigated the influence of prior synaptic activity on
the subsequent induction of synaptic plasticity in the
form of long term potentiation and long term depres-
sion in the dentate gyrus1,22,59 or CA1.34,58 In order to
advance our understanding of the mechanisms that
underlie learning and memory, we seek biologically
interpretable models of how different modalities of
sensory information are processed and integrated in
the hippocampus.

Specifically, we focus on the functional interactions
of two pathways on the dentate gyrus that represents
the first integration level in the hippocampus (Fig. 1).
The dentate gyrus receives its primary inputs from the
entorhinal cortex via the perforant path, which consists
of two distinct synaptic inputs/pathways, the lateral
perforant path (LPP) and the medial perforant path
(MPP), which receive and integrate cognitive infor-
mation (e.g., visual, auditory, and olfactory) from
other brain regions.56,61 It is possible to isolate the LPP
and the MPP experimentally, because they are ana-
tomically and functionally distinct (Fig. 1).30,31,53
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The LPP originates in the ventrolateral entorhinal area
and generates synapses on the outer one-third of the
molecular layer. The MPP arises in the dorsomedial
entorhinal cortex and synapses on the granule cell
dendrites in the middle one-third of the molecular
layer. The synaptic responses elicited in granule cells
by activation of these two distinct pathways exhibit a
number of different physiological2,46,45 and pharma-
cological28,33,36 characteristics. The output of the
dentate gyrus is subsequently processed in the hippo-
campus through several sub-regions that form a closed
loop (see Fig. 1). These sub-regions primarily consist
of cascaded excitatory connections that are organized
roughly transverse to the longitudinal axis of the hip-
pocampus, and they can be viewed as a set of inter-
connected, parallel circuits. The significance of this
anatomical organization is that transverse slices
(400 lm thick) of the dentate gyrus may be maintained
in vitro and preserve a substantial portion of their
intrinsic transverse circuitry.

Mathematical models have been developed on the
basis of physiological and biophysical principles to
characterize the functional properties of cortical
areas.32,55,60 These hypothesis-based models contain
several parameters that are biologically interpretable
and must be measured or estimated from experimental
data (whereby the term ‘‘parametric models’’). The
parametric models are not easy to scale-up in the case
of multiple interconnected neuronal units or when the
functional complexity of the system increases, because
the number of parameters required to represent such
functional complexity usually becomes too large for
a workable model. To overcome this limitation,

non-parametric models based on the input–output
approach were introduced in the so-called ‘‘reduced
form’’ about 20 years ago to offer a comprehensive
functional representation of neuronal networks in the
hippocampus.9,10,14,49 More recently, non-parametric
models have been used for modeling the input–output
relationship in the dentate gyrus11,7 or in the CA1
region25 of the hippocampus. A recently accepted
paper presents non-parametric models of the separate
effects of LPP and MPP stimulation on the granule cell
activity but does not examine the nonlinear interac-
tions of the two inputs and their combined effect on
granule cell activity.21 In the present paper, we employ
a ‘‘reduced form’’ non-parametric model based on the
Poisson–Volterra approach8,9,41,42 to model the non-
linear dynamic interactions of the simultaneous LPP
and the MPP stimulation and the combined effect of
the two inputs on the granule cell activity in the
dentate gyrus of the hippocampus.

The Poisson–Volterra modeling approach is math-
ematically rigorous and yields canonical models with
excellent predictive capabilities, even when the system
exhibits complex nonlinear dynamics. The key features
of these models are the Poisson–Volterra kernels, which
are quantitative descriptors of the system function in
terms of the input–output relationships and fully cap-
ture all possible nonlinear interactions among the
underlying biological mechanisms.41,42 These kernels
can be estimated robustly from experimental input–
output data and take the ‘‘reduced form’’ when the
output population spike is synchronized with the input
impulses.8,9,49 The non-parametric models are data-
based (inductive), unlike the parametric models that
are hypothesis-based (deductive). In the context of this
study, the non-parametric model has an advantage
over its parametric counterparts since it represents the
combined activities of all known and unknown
components of neuronal interactions without any
assumptions about the model structure and the
numbers or types of elements that may be contributing
to the neuronal activity. Most importantly, the non-
parametric modeling approach can be extended to
encompass the increasing complexity of multiple
inputs and outputs that is emerging with the recent
availability of multi-unit recordings using multi-
electrode arrays.

In the present study, the LPP and MPP pathways
were stimulated simultaneously with two independent
sequences of impulses having a random (Poisson)
distribution of inter-impulse intervals and the elicited
response of a population of granule cells—the output
of the neuronal system in this formulation—was
recorded with the multi-electrode arrays that were used
to simultaneously stimulate the LPP and the MPP. The
employed stimulus is termed the Random Impulse

FIGURE 1. Schematic of the hippocampal circuitry. The
perforant path of the dentate gyrus consists of two anatomi-
cally and functionally distinct subdivisions: the lateral perfo-
rant path (LPP) that arises in the ventrolateral entorhinal area
and synapses in the outer one-third of the molecular layer,
and the medial perforant path (MPP) that arises in the
dorsomedial entorhinal cortex and synapses to the granule
cell dendrites in the middle one-third of the molecular layer.
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Train (RIT), and it has been shown to test the system
with a variety of input patterns over a short experi-
mental time in a manner that reveals all possible
interactions within the system.8,9,21,27,41,43 The col-
lected experimental data were used to estimate in re-
duced form the Poisson–Volterra models for two
inputs that include up to third-order nonlinear inter-
actions between the LPP and the MPP. The results
suggest that third-order nonlinear interactions (quanti-
fied by the cross-kernels in the model) must be included
in the reduced-form Poisson–Volterra model to
achieve adequate predictive accuracy during co-acti-
vation of the LPP and the MPP. The employed
experimental and computational methods are pre-
sented in the following section. The results are pre-
sented in the subsequent section, followed by the
Discussion section.

MATERIALS AND METHODS

Experimental Preparation

Thin slices were taken from the hippocampus of
adult Sprague-Dawley male rats, 7–9 months of age
using standard procedures.21 Each slice was carefully
positioned on a multi-electrode array over an inverted
microscope (DML, DMIRB, Leika, Germany). The

slice was positioned so that stimulating electrodes
covered the inner blade of the dentate gyrus (Fig. 2a).
Accurate positioning of the slice on top of the multi-
electrode array was attained by floating the slice using
a very fine hair brush. The positioning of the slice
relative to the array was documented with a digital
camera (Hitachi VK-C370, Spot Model 2.0.0).
Throughout all experiments, slices were perfused with
a 1 mM MgSO4 aCSF (artificial Cerebro-Spinal Fluid)
at a flow rate of 15 mL/min, and constantly heated at
33 �C. A multi-electrode array system was used to
simultaneously stimulate and record from multiple
sites in each hippocampal slice. The system consisted
of two components: (1) a multi-site electrode array,
and (2) a multi-channel stimulation-recording system.
The multi-site electrode array employed in this exper-
iment is custom-designed and was fabricated and
tested in the Center for Neural Engineering at the
University of Southern California.21,27 The array was
positioned so that its electrode sites cover the appro-
priate sub-regions of the dentate gyrus (LPP and MPP)
with sufficient density as to allow separate stimulation
of each pathway. The multi-electrode array has 60
microelectrodes in a 3 · 20 configuration. The micro-
electrodes are embedded in a planar glass plate and
their diameter is 28 lm with a center-to-center spacing
of 50 lm. The multi-channel stimulation-recording

FIGURE 2. Selected electrodes for LPP and MPP stimulation (a). Characteristic field potential responses from the granule cell
layer due to LPP stimulation (b) or MPP stimulation (c). The occurrence of the stimulation is denoted by ?: The negative-going
deflection in each response is the population spike and its amplitude is measured as indicated by the vertical arrow. A segment of
RIT input impulses (with randomly varying inter-impulse intervals) of the two point-process stimuli applied to LPP (green) and MPP
(red) along with the elicited population spikes at the granule cells (d).
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system is a commercially available product (MEA60
Multi Channel Systems, Germany) that consists of
preamplifiers, data acquisition card, 8-channel stimu-
lation box and software for data acquisition and pre-
processing (MC Stimulus v2.0.3, MC Rack v 2.2.2).

Each slice was positioned on top of the multi-elec-
trode array as to cover the molecular layer from the
fissure to the granule cell body layer at the upper blade
of the dentate gyrus. Electrodes positioned at the outer
one-third of the molecular layer were chosen as can-
didates to stimulate the LPP and at the middle one-
third of the molecular layer to stimulate the MPP. The
selection of the optimum stimulating electrodes was
confirmed by the following electrophysiological crite-
ria: (1) field Excitatory Post-Synaptic Potentials
(fEPSPs) showed paired-pulse facilitation when the
LPP was stimulated, and paired-pulse depression when
the MPP was stimulated;16,33,39,45 (2) fEPSPs exhibited
a dendritic current sink at the outer molecular layer
and a dendritic current source at the middle molecular
layer when LPP was stimulated (accordingly, when the
MPP was stimulated fEPSPs exhibited a dendritic
current sink at the middle molecular layer and a den-
dritic current source at the outer molecular layer);16,20

(3) stimulation at MPP exhibited shorter latencies of
the population spike recorded in the granule cell layer
than when the LPP was stimulated.8,10,45 The electrode
positioned right below the granule cell layer into the
hilus was used to record the electrophysiological
activity of granule cells in the form of population
spikes that reflect the synchronous activation of den-
tate granule cells.3,37

Experimental Protocol

At the beginning of each experiment, input–output
(I/O) curves were recorded for the LPP and the MPP
separately. Each pathway was stimulated with a series
of pulses having intensities that varied between 10 and
140 lA, in 10 lA increments. Stimulation was deliv-
ered in the form of bi-phasic pulses (100 ls duration)
via the pair of stimulation electrodes appropriate for
each pathway. The time between successive pulses was
set to 30 s to avoid induction of long-term potentiation.
Each series of pulses was repeated five times. The I/O
curve for each pathway was used to determine the value
of the stimulation intensity that evoked 50% of the
maximum population spike amplitude response in the
granule cell layer. This value was used for the remain-
der of each experiment. Both pathways were simulta-
neously stimulated with random impulse train (RIT)
stimuli. Each RIT contained 800 Poisson-distributed
impulses (mean inter-impulse interval of 500 ms, cov-
ering the approximate range of 10–4000 ms). The
parameter of the Poisson distribution that determines

the average firing rate of the RIT was consistent with
the known firing rates of the respective hippocampal
neurons (2 Hz).51,57 At the end of RIT stimulation, the
system was tested for stationarity by administering a
series of I/O curve stimulations. Possible differences in
the resulting I/O curves before and after RIT stimula-
tion were taken as indicators of changes in granule cell
excitability (non-stationarity of the system). Only data
that exhibited levels of such changes within ±15% of
the baseline were included in the analysis.

The experimental data were sampled at 25 kHz per
channel and the amplitude of each population spike
was extracted for analysis using a customized interface
written in Matlab (v6.5). The amplitude of the popu-
lation spike was defined as the segment of the vertical
line between the negative peak of the spike and the
tangential straight line connecting the spike onset and
offset (see Figs. 2b and 2c).

Poisson–Volterra Modeling of a Two-Input System

The collected data were analyzed using a variant of
the general Volterra modeling approach43,41,42 adapted
to the two-input case. The two inputs are independent
Poisson RIT stimuli and the output is the resulting
sequence of population spikes with variable amplitude.
This approach considers the input and the output
spikes to be synchronized, i.e., to occur in the same
time-bin which is set equal to 10 ms so that it exceeds
the maximum output latency of 8.2 ms observed in our
experiments.

The point-process inputs of the system (LPP and
MPP) are RIT sequences of impulses expressed as:

xL ¼
X

njL

dðn� njLÞ ð1Þ

xM ¼
X

njM

dðn� njMÞ ð2Þ

where the discrete-time delta function (Kronecker
delta) denotes an impulse at the indicated discrete
time-index nj, and the subscripts L and M denote the
LPP and MPP pathways, respectively. The population
spike amplitude that is generated in the granule cell
layer in response to a stimulating impulse either at the
LPP or the MPP is given by:

yðniÞ ¼ yLðniLÞ þ yMðniMÞ ð3Þ

where y(ni) is the output at discrete time ni, which is the
time of occurrence of the i-th stimulating impulse
either at the LPP or the MPP. An implicit assumption
is that stimulating impulses do not occur simulta-
neously at both pathways, so that only one pathway
can be stimulated at each time instant ni. In the
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adopted modeling formulation, the output is com-
posed of two components corresponding to the timing
of the impulses of each of the two inputs that are given
by the expressions of the reduced-form Poisson–Vol-
terra model with two inputs as:

yLðniLÞ ¼ k1yL þ
X

njL

k2yLxLðniL � njLÞ

þ
X

njM

k2yLxMðniL � njMÞ

þ
X

njL

X

nj0
L

k3yLxLxLðniL � njL ; niL � nj0
L
Þ

þ
X

njL

X

nj0
M

k3yLxLxMðniL � njL ; niL � njMÞ

þ
X

njM

X

nj0
M

k3yLxMxMðniL � njM ; niL � nj0
M
Þ ð4Þ

and

yMðniMÞ ¼ k1yM þ
X

njL

k2yMxLðniM � njLÞ

þ
X

njM

k2yMxMðni2 � nj2Þ

þ
X

njL

X

nj0
L

k3yMxLxLðniM � njL ; niM � nj0
L
Þ

þ
X

njL

X

nj0
M

k3yMxMxLðniM � njM ; niM � njLÞ

þ
X

njM

X

nj0
M

k3yMxMxMðniM � njM ; niM � nj0
M
Þ ð5Þ

where the discrete-time index nj over which summation
occurs in the above expressions is the time of occur-
rence of any prior j-th impulse within a time window l
starting at present and extending into the past (termed
the ‘‘system memory’’ and representing the input past
epoch exerting causal effects on the output present
value). Note that these prior impulses may occur at
either stimulating pathway (LPP or MPP), as indicated
by the respective subscript of the time index. Thus, a
stimulating impulse at one pathway may exert a causal
effect on the granule cells through either pathway over
a subsequent time window equal to the system mem-
ory l. The effects that are due to the same pathway are
represented by the ‘‘self-kernels’’ and those due to the
other pathway are represented by the ‘‘cross-kernels’’
(see below). These two sets of reduced-form Poisson–
Volterra kernels are clearly separated and constitute
the key features of this Poisson–Volterra model,42

since they describe the quantitative effects of the inputs
on the output and provide the model with its predictive
capability. The estimation of these kernels using actual
input–output data is the key objective of the modeling

task in this context. In the expressions (4) and (5)
above, the following reduced-form Poisson–Volterra
kernels are denoted by the proper subscript for the
respective input (L for LPP or M for MPP): k1yL and
k1yM are the first-order kernels (constants), k2yLxLðnÞ
and k2yMxMðnÞ are the second-order self-kernels (one
dimensional), k2yLxMðnÞ and k2yMxLðnÞ are the second-
order cross-kernels (one dimensional), k3yLxLxLn1; n2
and k3yMxMxMðn1; n2Þ are the third-order self-kernels
(two dimensional), and k3yLxLxMðn1; n2Þ; k3yLxMxMðn1; n2Þ;
k3yMxMxLðn1; n2Þ and k3yMxLxLðn1; n2Þ are the third-order
cross-kernels (two dimensional). The obtained esti-
mates of these kernels are shown in the following
section.

The first-order kernel represents the amplitude of the
population spike attributed to the respective input
impulsewhen it is acting alone—i.e., in the absence of any
other input impulse within the system memory. The sec-
ond-order self-kernel represents the nonlinear dynamic
interactionswithina singlepathway (either theLPPor the
MPP) between the present impulse and each of the past
impulses of the same stimulus within the memory
window l. Thesenonlineardynamic interactions result in
partial modulation of the output (the amplitude of the
population spike) in a manner dictated by the specific
valueof the second-order self-kernel corresponding to the
specific inter-impulse interval, in accordance with the
reduced-form Poisson–Volterra model of Eqs. (3)–(5).
Additional output modulation results from the other
terms of the model in a manner dictated by the respective
kernels. Thus, the second-order cross-kernel represents
the nonlinear dynamic interactions across two pathways
for the respective inter-impulse interval, i.e., between the
present stimulus impulse in one pathway and each of
thepast stimulus impulses in theotherpathwaywithin the
memory window l.

In analogous fashion, the third-order self-kernel
represents the interactions between the present impulse
and any two preceding impulses of the same stimulus
within a single pathway over the memory window l,
and the third-order cross-kernel represents the inter-
actions between the present stimulus impulse in one
pathway and any two preceding stimulus impulses in
the other pathway over the memory window l. The
specific amount of third-order modulation of the out-
put population spike is determined by the value of the
respective third-order kernel at the corresponding two
inter-impulse intervals. Therefore, knowledge of the
values of these kernels provides complete quantitative
information about the nonlinear functional character-
istics of the system (for the respective order of inter-
actions), including the manner in which the two
pathways interact to integrate incoming information
and produce the neuronal activity at the granule cells
of the dentate gyrus.

DIMOKA et al.856



In order to estimate efficiently and accurately the
kernels from relatively short input–output data records,
we approximate them with linear combinations of
exponentially decaying Laguerre functions through an
orthogonal expansion which improves the estimation
accuracy and reduces the computational effort.40 The
Laguerre expansion coefficients are estimated using
least-squares methods, and the kernel estimates are
reconstructed using the respective estimated expansion
coefficients.17 The predictive accuracy of the obtained
model (employing the estimated kernels) can be evalu-
ated using the Normalized Mean Square Error
(NMSE) of the model prediction vs. the actual output
of the system, which is non-negative and defined as:

NMSE ¼
P

i ðYpri � YdataiÞ
2

PY2
datai

i

ð6Þ

where Ypr is the predicted amplitude of the population
spikes using the estimated kernels and Ydata is the re-
corded amplitude of the population spikes obtained
during the experiment. The value of the NMSE is ta-
ken as a measure of the predictive capability of the
model and becomes zero for a perfect prediction. The
inevitable presence of measurement errors and noise in
the data prevents the NMSE from becoming zero in a
practical context, even if the model is perfect. There-
fore, the interpretation of the numerical values of the
computed NMSE must be made in the context of the
noise conditions and possible measurement errors in
each case. Typically, NMSE values of less than 0.2 are
deemed to indicate satisfactory predictive capability of
the model that validates its specific form. Since the
kernel estimation procedure employs Laguerre expan-
sions, the NMSE value of the model prediction
depends on the selected number of Laguerre functions
for kernel expansion (L) and the value of the Laguerre
parameter a.41,42 The selection of the optimum values
of a and L in each particular application is accom-
plished through a search procedure over various values
of L and a (varying in ascending order) that seeks to
minimize the NMSE of the respective model predic-
tion. The number L of Laguerre functions is selected
through the mentioned search procedure by requiring
that an increase of L by 1 causes reduction of the
prediction NMSE by at least 3%.

The kernel estimation procedure and the nonlinear
modeling/analysis of this system were performed with
the use of a specialized software package (LYSIS) that
has been developed by the Biomedical Simulations
Resource at theUniversity of SouthernCalifornia and is
distributed to the biomedical community free of charge.
The statistical significance of the obtained estimates
of the Laguerre expansion coefficients (from which
the kernel estimates and the Poisson–Volterra model

predictions are constructed) was evaluated by applying
the Student’s t-test at the significance level of p<0.01.

RESULTS

Five experiments were performed in vitro using RIT
stimuli for the two inputs (LPP and MPP) and data
records of 400 spikes per pathway for each experiment
were collected. Following a search procedure of suc-
cessive trials and using the prediction NMSE as crite-
rion for model performance, we selected the third-order
reduced-form Poisson–Volterra model described by
Eqs. (3)–(5) as the most appropriate for the analysis the
data collected in the RIT experiments. Three Laguerre
functions (L = 3) were selected for the kernel expan-
sions as a good compromise between prediction accu-
racy and model complexity (since the total number of
free parameters increases with L). For L = 3, the total
number of free parameters in the two-input model of
Eqs. (4)–(5) is 62, which is less than a third of
the number of output spikes and assures that we avoid
the risk of overfitting. For L = 3, the optimum value
of the Laguerre parameter a = 0.984 ± 0.004 was
selected as to minimize the NMSE of the model
prediction. Figure 3 shows the average NMSE derived
from the five different experiments for L = 3 and a
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FIGURE 3. The average NMSE values over five experiments
using the third-order Poisson–Volterra model given by
Eqs. (3)–(5) for a range of a values from 0.90 to 0.99 and three
Laguerre functions (L = 3). For the optimum selection of
a = 0.984 and L = 3, the NMSE of the model prediction is
14.39 ± 3.86% when only the self-kernels are included, and
drops to 5.88 ± 2.51% when both self-kernels and cross-
kernels are included in the model.
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range of a values from 0.90 to 0.99. For these selections
of L and a values, the NMSE was calculated both with
and without including the cross- kernels in the third-
order model. When only the self-kernels were included,
the value of the NMSE was 14.39 ± 3.86%. When
both the self-kernels and the cross-kernels were in-
cluded the NMSE dropped to 5.88 ± 2.51%. The
inclusion of the cross-kernels reduced the NMSE by
8.52%. Application of the paired t-test indicated that
the inclusion of the cross- kernels resulted in a statis-
tically significant reduction of the NMSE (p<0.01),
which implies that significant dynamic interactions ex-
ist between the two pathways.

For each input–output dataset, the first-order, sec-
ond-order and third-order kernels were estimated for
L = 3 and the optimum value of the parameter
a = 0.984±0.002. Over the five experiments, the
average value (±one standard deviation) of the first-
order kernel (k1yLÞ for the LPP was 186.75 lV
(±54.9 lV) and of the first-order kernel (k1yMÞ for the
MPP was 276.65 lV (±22.1 lV). The average values
and the standard-deviation bounds of the second-order
self-kernels and cross-kernels, normalized by the cor-
responding first-order kernel value, are shown in Fig. 4

for the LPP and in Fig. 5 for the MPP. It is evident in
Fig. 4a that the average values of the normalized sec-
ond-order LPP self- kernel k2yLxL exhibit initially a fast
facilitatory phase up to about 110 ms, followed by a
slow inhibitory phase up to about 1600 ms. In Fig. 4b,
the average values of the normalized second-order
cross-kernel k2yLxM exhibit initially a moderate facili-
tatory phase that crosses into a very shallow inhibitory
phase around 200 ms and diminishes around 800 ms.
By contrast, we observe in Fig. 5a that the average
values of the normalized second-order MPP self-kernel
k2yMxM exhibit initially a very small facilitatory phase
up to about 70 ms, followed by a slow inhibitory phase
that diminishes around 1800 ms. In Fig. 5b, we see
that the average values of the normalized second-order
cross-kernel k2yMxL exhibit initially a moderate facili-
tatory phase up to about 160 ms and cross into a
shallow inhibitory phase that diminishes around
1200 ms. We observe the distinct dynamic character-
istics of the self-kernels for the two input pathways and
the similar dynamic characteristics of the cross-kernels.

The average values of the normalized third-order
self-kernels and cross-kernels (as well as their respec-
tive standard-deviation bounds) are shown in Fig. 6
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for the LPP and in Fig. 7 for the MPP. The average
values of the normalized third-order LPP self-kernel
k3yLxLxL are shown in Fig. 6b and the respective stan-
dard-deviation bounds are shown in Fig. 6a (upper
bound—i.e., average plus one standard deviation) and
Fig. 6c (lower bound—i.e., average minus one stan-
dard deviation). It is evident in Fig. 6b that this kernel
exhibits initially a strong inhibitory region that crosses
into two weaker (symmetric) facilitatory regions after
100 ms. The latter regions diminish around 1400 ms.
The meaning of the kernel values in the initial inhibi-
tory region is that the effect of a pair of impulses
occurring within 100 ms prior to the present impulse is
negative on the amplitude of the population spike
caused by the present impulse. Conversely, the kernel
values in the facilitatory regions indicate that the effect
of a pair of impulses occurring between 100 and
1400 ms prior to the present impulse is positive on the

amplitude of the population spike caused by the
present impulse. The size of this positive or negative
effect is determined by the value of the kernel at the
coordinates that correspond to the two time-lags of the
pair of ‘‘conditioning’’ (i.e., preceding) impulses (i.e.,
the time between the present output spike and each of
the ‘‘conditioning’’ input impulses).

The average values of the normalized third-order
LPP cross-kernels k3yLxLxM and k3yLxMxM are shown in
panels E and H, respectively. The corresponding
standard-deviation upper bounds are shown in panels
D and H, while the lower bounds are shown in panels
G and I, respectively. It is evident in Fig. 6e that the
cross-kernel k3yLxLxM exhibits characteristics similar
to the self-kernel in panel B with smaller facilitatory
regions. By contrast, we see in Fig. 6h that the cross-
kernel k3yLxMxM exhibits opposite characteristics (i.e.,
an initial strong facilitatory region that crosses into
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two weaker inhibitory regions around 200 ms). Note
also that the cross-kernels are not symmetric in general
(unlike the self-kernels that are symmetric by defini-
tion).

In an analogous manner to the LPP case, the third-
order kernels (self- and cross-) in the MPP case are
presented in Fig. 7. The average values of the nor-
malized third-order MPP self-kernel are shown in
Fig. 7b and the respective standard-deviation bounds
are shown in Fig. 7a (upper bound) and Fig. 7c (lower
bound). It is evident in Fig. 7b that this kernel exhibits
a similar morphology to its LPP counterpart. The same
observation holds for the average values of the nor-
malized third order MPP cross-kernels shown in
Figs. 7e and 7h, respectively. The corresponding
standard-deviation upper bounds are shown in panels
D and H while the lower bounds are shown in panels G

and I, respectively. It is noted that the magnitudes of
the third-order kernels are not similar for the two
pathways. Specifically, the magnitude of the MPP self-
kernel is larger its LPP counterpart, but this relation is
reversed for the cross-kernels of the two pathways.

Predictive Capabilities of the Model

In addition to providing a quantitative description
of the nonlinear dynamic characteristics of the system
in the form of kernels, the proposed third-order
Poisson–Volterra model has predictive capabilities for
arbitrary inputs. In Fig. 8, we show the actual output
data (i.e., the sequence of population spikes in
response to independent RIT stimulation at both
pathways) and the response predicted by the third-
order Poisson–Volterra model for one representative

3 rd rd 3 rd 

MEDIAL PERFORANT PATH 

2000 

1500 

1000 

 500  

2000 

1500 
1000 

500 

2000 

1500 

1000 

 500  

2000 

1500 
1000 

500 

2000 

1500 

1000 

 500  

2000 

1500 
1000 

500 

2000 

1500 

1000 

 500  

2000 

1500 
1000 

500 

2000 

1500 

1000 

 500  

2000 

1500 
1000 

500 

2000 

1500 

1000 

 500  

2000 

1500 
1000 

500 

2000 

1500 

1000 

 500  

2000 

1500 
1000 

500 

2000 

1500 

1000 

 500  

2000 

1500 
1000 

500 

2000 

1500 

1000 

 500  

2000 

1500 
1000 

500 

t i m (   e m s ) 
t i m (   e m s ) 

t i m (   e m s ) 

t i m (   e m s ) 
t i m (   e m s ) 

t i m (   e m s ) 

t i m (   e m s ) 
t i m (   e m s ) 

t i m (   e m s ) 

t i e m ( m s ) 

t i m e ( m s ) 

t i m e ( m s ) 

t i m e ( m s ) 

t i m e ( m s ) 

t i e m ( m s ) 

t i m e ( m s ) 

t i m e ( m s ) 

t i m e ( m s ) 

k 3
 y M

 x L
 x L

 
k 3

 y M
 x L

 x L
 

k 3
 y M

 x L
 x L

 

k 3
 y M

 x M
 x L

 
k 3

 y M
 x M

 x L
 

k 3
 y M

 x M
 x L

 

k 3
 y M

 x M
 x M

 
k 3

 y M
 x M

 x M
 

k 3
 y M

 x M
 x M

 

(A)

(C)

(B)

(D)

(F)

(E)

(G)

(I)

(H)

FIGURE 7. The average of the normalized third-order self-kernel for the MPP is shown in panel B on the left column and the
standard-deviation bounds are shown in panel A (upper bound) and C (lower bound). The averages of the normalized third-order
cross-kernels are shown in panels E and H, while the corresponding standard-deviation bounds are shown in panels D and G
(upper bounds) and panels F and I (lower bounds).

DIMOKA et al.860



experiment. Two ways of calculation for the model-
predicted response are shown: one considering only the
self-kernels and the other considering both the self-
kernels and cross-kernels. It is evident that the pre-
diction of the output is better when the cross-kernels
are included—a result that suggests that the interac-
tions between the two pathways (captured by the cross-
kernels) are significant for this system and must be
included in the model. The predictive power of the
Poisson–Volterra model can be further validated using
out-of-sample predictions, where the system output is
predicted for an arbitrary stimulus using kernels ob-
tained from a different input–output dataset (segment
shown in Fig. 9). Visual assessment and the computed
NMSE values demonstrate the out-of-sample predic-
tive power of the Poisson–Volterra model. For the
representative experiment in Fig. 8, the in-sample
NMSE is 5.21% and the out-of-sample NMSE is
6.62%.

We should note that, if a second-order Poisson–
Volterra model is used (i.e., a model including only
first and second order kernels), then the optimum
a = 0.992 and the model prediction for L = 3 has
NMSE values of 10.79 ± 4.48% (when including both
self- and cross-kernels). This demonstrates the superi-

ority of the third-order Poisson–Volterra model over
the second-order one, since the former yields predic-
tion NMSE values of 5.88 ± 2.51% (t = 2.14,
p<0.05, df = 7), (a statistically significant reduction).

DISCUSSION

Biologically interpretable models of the hippocam-
pus that capture accurately its functional properties
and the dynamic interactions among its various neu-
ronal inputs are essential in order to understand how
distinct sensory modalities are processed and inte-
grated within the hippocampus. In this study, we use
experimental data collected under random stimulation
conditions to obtain and validate a non-parametric
(Poisson–Volterra) model that describes accurately the
effect of the nonlinear dynamic interactions between
combined stimulation at the LPP and the MPP path-
ways on the granule cell activity in the dentate gyrus of
the hippocampus. In the presented approach, the
functional properties of this hippocampal neuronal
network are described reliably and quantitatively by
kernel functions that are characteristic of the system
and define uniquely its input–output relation so that
the output of the system can be accurately predicted in
response to arbitrary inputs. These kernel functions are
determined experimentally through a novel estimation
procedure utilizing data that are collected by stimu-
lating two afferent pathways of the neuronal network
(i.e., the LPP and MPP) with random (Poisson) se-
quences of impulses to generate a broad repertoire of
interactions among the network elements. These
experimental conditions allow us to observe the
activity of the system under a broad variety of oper-
ating conditions (over the relatively short experimen-
tation time) that are subsequently analyzed in the
general Poisson–Volterra modeling framework to give
us the capability of predicting the output for arbitrary
inputs (generalization property). The kernels of the
obtained Poisson–Volterra model represent a set of
canonical descriptors of the functional characteristics
of the system and, as such, they can provide some
valuable insight into the neuronal mechanisms of this
system. However, the non-parametric nature of the
model limits its ability to draw a definitive relation
with the underlying neuro-molecular structures or
mechanisms.

These results demonstrate that the non-parametric
(Poisson–Volterra) model captures the nonlinear
dynamic interactions between the LPP and the MPP
and provides accurate prediction of the system output
to arbitrary inputs. It was shown that the inclusion of
third-order kernels significantly enhances the predictive
capabilities of the model and, therefore, the actual
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system possesses significant third-order nonlinearities
(i.e., dynamic interactions among triplets of impulses
affect the output) that are ignored in the widely-used
approach of paired-pulse stimulation and associated
analysis. Specifically, the value of the prediction
NMSE dropped by 4.91% (t = 2.14, p<0.05, df = 7)
when the third-order model was used instead of the
second-order model. In addition, the inclusion of the
cross-kernels in the third-order model reduced the
prediction NMSE by 8.52% (from 14.39% to 5.88%,
t = 4.13, p<0.01, df = 7) relative to the respective
NMSE value when only the self-kernels were used in
the model (not including the pathway interactions)
(Table 1). Therefore, the appropriate Poisson–Volterra
model that describes the nonlinear dynamic interac-
tions of the two pathways of the perforant path on the
granule cell activity of the dentate gyrus is of third-
order and must include both the self-kernels and the
cross-kernels.

The performance of the third-order model was
deemed satisfactory. Although we cannot rule out the
possibility of higher order terms, the amount of
available data cannot practically support an extension
to fourth-order models at this time (without risk of
over-fitting). Higher order models will be explored in
the future with the use of Principal Dynamic Modes.41

Although the application of the RIT stimulation
and the analysis of the resulting data in the context of
Poisson–Volterra modeling requires greater computa-
tional effort, this incremental computational effort is
justified by the valuable information contained within
the obtained results. This brings us to the perennial
question of the physiological significance and the
interpretation of the obtained Poisson–Volterra ker-
nels in a manner that advances our scientific under-
standing of the system. Consider, for instance, the
early depressive characteristics of the granule cells that
have been attributed to GABA-mediated IPSPs48 and
GABA-mediated increase in chlorium conductance
that reduces the excitability of granule cells23 (for lags
less than 40 ms) or have been attributed to the recur-
rent (feedback) activation of the GABAergic basket
cells5,10,37 (up to lags of 100 ms). Such early negative
values (representing depressive effects) are not seen in
the obtained second-order kernels but they are evident
in the third-order kernels (always in the self-kernels
and in one of the two cross-kernels). Our interpretation

is that the observed early depression is due to third-
order effects in the presence of dual-pathway stimula-
tion (LPP and MPP), while the previously reported
observations were for single-pathway stimulation (LPP
or MPP).21 This intriguing result indicates the impor-
tance of studying the system of interest under condi-
tions that resemble its normal operation (e.g.,
combined and random stimulation), otherwise the re-
sults may be partial and potentially misleading. Note
that the positive values exhibited in the early lags (up
to 100 ms) of the second-order kernels may be attrib-
uted to NMDA-mediated synaptic events. Similar
facilitation characteristics are observed at intermediate
lags of the third-order LPP kernel and may be attrib-
uted to augmentation of excitatory transmitter
release4,19 or presynaptic inhibition of GABA
release.12,29 This is consistent with the reported facili-
tation in the region of intermediate lags (100–200 ms).
At longer lags (200–1000 ms), the obtained second-
order kernels have negative values in agreement with
the depressive characteristics of granule cells reported
previously10,13 which may be due to a voltage-depen-
dent and/or calcium-activated potassium conduc-
tance.52,54 These effects are quantitatively reflected on
the estimated kernel values and separated into second-
order and third-order effects. This initial interpretation
of the obtained kernels is only a first step in a long-
lasting effort that will be required before complete
physiological interpretation can be achieved and the
full scientific benefit of this analysis can be realized.

The proposed approach offers the appropriate
methodological means for analyzing quantitatively the
(nonlinear) dynamic interactions between any two (or
more) pathways of the hippocampus or other neuronal
systems. Following this approach, future research can
expand the mathematical model to include three or
more inputs of the dentate gyrus and to incorporate
other hippocampal regions. Such a representation of
the hippocampus can provide a compact quantitative
representation of the interactions among hippocampal
pathways (which have been so far studied individually)
that may advance our understanding of the complex
neuronal mechanisms that integrate sensory informa-
tion in the hippocampus. This remains a great chal-
lenge for future research.
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TABLE 1. NMSE comparison for the in-sample second and
third order models.

Second order

model (%)

Third order

model (%)

Self kernels 19.32 ± 5.21 14.39 ± 3.86

Self & Cross kernels 10.79 ± 4.48 5.88 ± 2.51
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