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Abstract—A comprehensive, quantitative description of the
nonlinear dynamic characteristics of the short-term plasticity
(STP) in the CA1 hippocampal region is presented. It is based
on the Volterra–Poisson modeling approach using random
impulse train (RIT) stimuli. In vitro hippocampal slice prep-
arations were used from adult rats. RIT stimuli were applied at
the Schaffer collaterals and population spike responses were
recorded at the CA1 cell body layer. The computed STP
descriptors that capture the nonlinear dynamics of the
underlying STP mechanisms were the Volterra–Poisson ker-
nels. The kernels quantified the presence of facilitatory and
inhibitory STP behavior in magnitude and duration. A third
order Volterra–Poisson STP model was introduced that
accurately predicted in-sample and out-of-sample system
responses. The proposed model could also accurately predict
impulse pair and short impulse train system responses.

Keywords—CA1, Multielectrode array, Nonlinear analysis,

Paired pulse, Random impulse train, Short-term plasticity,

Kernels.

INTRODUCTION

Short-Term Plasticity (STP) is a phenomenon where
use dependent synaptic changes occur as a result of
intense activity over a scale of seconds and wane back
to the baseline.36 Recently, there has been a growing
interest in the information processing characteristics of
STP, as it is thought to play an important role in
habituation6, learning20 and temporal information
processing.1,5,12,14,18

The weight of evidence for neural encoding points to
the temporal relationship of the cell output (firing fre-
quency, EPSP, Population Spike) to its presynaptic in-
put (synaptic current evoked by the impingement of
electrical impulses [action potentials] on the nerve ter-
minal).27,11,24,28,29 This relationship has been tradi-

tionally investigated using paired impulse stimulation of
variable interimpulse intervals8,19,26 and short impulse
trains at fixed frequencies.5,4,7,25 The paired impulse
approach is based on two-impulse stimuli separated in
time by a variable time interval while the short impulse
train approach uses impulse sequences at fixed inter-
impulse intervals. Fixed frequency impulse trains are
thought to be more realistic stimuli since paired action
potentials and paired population spikes rarely occur
in vivo. Both methods provide ad-hoc quantitative
descriptors of STP. They are, however, limited by
the required long experimental time and by the type and
the complexity of impulse interaction they can address.

Recently, several computational neuroscientists and
electrophysiologists have utilized Poisson distributed
Random Impulse Trains2,3,30,32,34 and natural stimuli
patterns10 to study neuronal dynamics. The choice of
Poisson distributed Random Impulse Trains (RIT) and
natural stimuli patterns can be viewed as a hybrid
between the paired impulse stimulation (variable inte-
rimpulse intervals) and the fixed frequency impulse
train stimulation (the presence of an impulse sequence
instead of only two impulses). However, the variety of
analytical tools employed for data analysis in studies
with this type of stimuli has not facilitated convergence
in the conclusions and did not provide any type of
relationship with paired impulse or short impulse train
STP descriptors.

In this paper, we present quantitative descriptors of
the nonlinear dynamics underlying the STP mecha-
nisms in the CA1 hippocampal region. We applied the
RIT stimuli to the Schaffer collaterals of CA1 in vitro
preparations and recorded the corresponding popula-
tion spike responses. We used the reduced Volterra–
Poisson modeling approach9,15,16 to compute the STP
descriptors in the form of the reduced Volterra–Pois-
son kernels. We employed a third order model to
capture and represent the nonlinear dynamic behavior
of the underlying STP mechanisms. The computed
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quantitative STP descriptors (kernels) presented a
comprehensive view of the excitatory and inhibitory
STP behavior under a more realistic stimulation sce-
nario. The resulting representation of STP provided a
compact mathematical model with predictive capabil-
ities, reducing the experimental time required for gen-
erating the new STP model considerably (compared to
the impulse pair and short impulse train methods).

The article is organized into the following sections:
(1) Materials and Methods, that describes the experi-
mental setup, the data collection process, and the data
analysis method; (2) Results, that presents estimates of
the quantitative kernel STP descriptors of the CA1
hippocampal region in vitro and illustrates the predic-
tive capabilities of the STPmodel; provides estimates of
the STP mechanism’s memory and presents STP facil-
itatory and inhibitory characteristics; compares the
kernel STP descriptors with the Paired Impulse Facili-
tation Function (PIFF) describing STP when Paired
Impulse stimulation is used and the Impulse Train
Function (ITF) that describes STP when Impulse Train
Stimuli are used; (3) Discussion, that concludes the
article summarizing STP characteristics in the CA1
hippocampal region revealed by the kernel STP
descriptors and by comparing the RIT approach with
the impulse pair and the short impulse train approach.

MATERIALS AND METHODS

Biological Preparations & Hardware

Adult rats were decapitated after being fully anes-
thetized with Halothane. The hippocampus was ex-
tracted in a chilled aCSF bath and transverse slices
(500 lm thick) were obtained using a Leika vibrotome
(VT 100S). Each slice was positioned over a multi-
electrode array (Fig. 1) with the guidance of an in-
verted microscope (Leica DML 4�). A bipolar
stimulation electrode (twisted Nichrome wires) was
placed in the Schaffer collaterals region. The temper-
ature was maintained at 30�C. Extracellular recordings
were achieved using a microelectrode array. The setup
consisted of a multimicroelectrode array (MEA-417),
pre-amplifiers, two data acquisition boards (Microstar,
DAP 3200/214e series) at 7.35 kHz sampling rate per
channel, and custom-developed software. The dataset
from the channel with the strongest response (mean
across channels: 421 lV, SD: 193 lV) was chosen for
analysis. A Matlab based custom user interface was
employed to control the data acquisition boards, per-
form data extraction, and conduct the data analysis.

Data Collection Process

In the beginning of each experiment, an Input–
Output (I/O) curve was collected, forming a map

between stimulus intensity and amplitude of the pop-
ulation spike response.23,31,33 The stimulation intensity
was adjusted to evoke a response with amplitude below
15% of the maximum population spike amplitude re-
corded in the I/O curve. Five stimulation sequences
were then applied. Each stimulation sequence formed a
subset of data and consisted of a pair of impulses
30 ms apart, followed by a random impulse train
(RIT) of 200 pulses (Poisson Distributed with a mean
rate of 2 Hz) 30 s later and 5 min of resting time. The
interval between the beginning and the end of each
stimulation sequence (paired pulse + RIT + 5 min of
resting time) was approximately 7 min.

Data Analysis Methods

The data were preprocessed for electrophysiological
stability and extraction of the amplitude of the popu-
lation spike responses.15 Each population spike re-
sponse amplitude was assumed to be contemporaneous
with its corresponding impulse stimulus.

Third order reduced Volterra–Poisson model

The data were analyzed using a variant of the Vol-
terra–Poisson modeling approach, adapted for random
impulse sequence stimuli and spike sequence
responses.9 The calculated first, second, and third or-
der kernels served as the STP descriptors that captured
STP nonlinear dynamics. They were also used to form
a mathematical model of STP with predictive capa-
bilities, expressed by the following equation:

300µM

FIGURE 1. Picture of the hippocampal slice positioned over
the multielectrode 8 � 8 array where each black dot repre-
sents an electrode.
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yðniÞ ¼k1 þ
X

ni�l<nj<ni

k2ðni � njÞ

þ
X

ni � l<nj<ni

ni � l<nk<ni

k3ðni � nj; ni � nkÞ; ð1Þ

where ni is the time of occurrence of the i-th impulse
stimulus, nj is the time of occurrence of the j-th impulse
stimulus prior to the i-th impulse stimulus, nk is the
time of occurrence of the k-th impulse stimulus prior to
the i-th impulse stimulus, y(ni) is the amplitude of the
population spike response to the i-th impulse stimulus,
l is the memory of the biological system, k1 is the first
order kernel, k2 is the second order kernel, and k3 is the
third order kernel. Equation 1 describes the amplitude
of the population spike at time ni in terms of the first
order kernel k1, the second order kernel k2 (the effect
of past impulse stimuli relative to the present impulse
stimulus), and third order kernel k3 (the effect of any
past pair of impulse stimuli relative to the present
impulse stimulus). The first order kernel represents the
mean population spike amplitude. The first order
kernel can also be thought of as the response to a single
stimulus after a delay greater than or equal to the
memory of the system. The second order kernel
quantifies the effect on the current population spike
amplitude of the interaction between the current im-
pulse stimulus and each past impulse stimulus within
the memory window l. The third order kernel quan-
tifies the effect on the current population spike
amplitude of interaction between the present impulse
and any two past impulses within the memory window
l (Fig. 2). In this article, the second and third order
kernels were normalized with respect to the first order
kernel.

For computational efficiency purposes, the Laguerre
expansion method21 was used to estimate the kernels.
The second and third order kernels were expanded in
the orthogonal associated Laguerre basis functions
Ll(m):

k2ðni � njÞ ¼
XL�1

l¼0
clLlðni � njÞ ð2Þ

k3ðni�nj1 ;ni�nj2Þ¼
X

l1

X

l2

bl1;l2Ll1ðni�nj1ÞLl2ðni�nj2Þ;

where {cl} and fbl1;l2g are the Laguerre coefficients and

LlðmÞ ¼ a
m�1
2 ð1� aÞ

1
2

Xl

k¼0
ð�1Þk n

k

� �
1
k

� �
aðl�kÞð1� aÞk

ð3Þ

is the l-th order Laguerre function with 0 < a < 1.
Substitution of the kernels in Eq. (1) with their expan-
sion from Eqs. (2) results in an expression we use, in
conjunction with the experimental data, to estimate the
Laguerre coefficients via least square optimization. The
computed Laguerre coefficients are used in Eqs. (2) to
estimate the kernels. The use of Laguerre basis functions
provides smooth kernels estimates while it makes the
kernel computation task considerably more tractable. It
reduces the kernel estimation variance but increases the
kernel estimation bias. A detailed discussion on the
variability of the kernels computed via the Laguerre
expansion method can be found in Westwick et al.35

The accuracy of the estimated kernels is assessed by
the Normalized Mean Square Error (NMSE), defined
as follows:

NMSE ¼

P
i

½ymodelðniÞ � ydataðniÞ�2

P
i

½ydataðniÞ�2
; ð4Þ

where ymodel is the model response obtained by
substituting the computed kernels into Eq. (1) and
ydata is the sequence of amplitudes of the population
spikes recorded at CA1. Small NMSE values indicate
that the kernels reliably capture the nonlinear
dynamics of the system they model. Larger NMSE
values suggest that higher order terms are needed or
that the data are noisy. The NMSE is also used to
determine number of Laguerre functions (L) and the
Laguerre alpha (a) parameter. Values L and a are
chosen to minimize the prediction NMSE and are
evaluated individually for every dataset. Details on the
estimation of the kernels from impulse-input and
spike-output dataset can be found in Gholmieh et al.15

It should be noted that that the terms in the Volterra–
Poisson Series are not orthogonal to each other.22

Paired impulse facilitation function

The traditional descriptor of STP has been the
Paired Impulse Facilitation Function (PIFF), defined
as the ratio of the conditioned response amplitude over
the unconditioned response amplitude to a pair of
impulse stimuli with a specific interimpulse interval.8,19

Mathematically, the PIFF can be expressed as:

PIFFðDnÞ ¼ Y2

Y1
; ð5Þ

where Y1 is the amplitude of the population spike
response to the first impulse (unconditioned response),
Y2 is the amplitude of the population spike response to
the second impulse (conditioned response), Dn is the

Short-Term Plasticity using Random Impulse Train Stimulation 849



interimpulse interval (i.e., Dn = n2 ) n1 where n1 is the
time of occurrence of the first impulse and n2 is the
time of occurrence of the second impulse). PIFF values
greater than one indicate facilitation while PIFF values
less than one are interpreted as depression.

Using the PIFF defined in Eq. (2) as the STP
descriptor, we can express the conditioned response
Y(Dn) in terms of the unconditioned response Y1 and
the interimpulse interval Dn as follows:

YðDnÞ ¼ Y1PIFFðDnÞ: ð6Þ

Using the Volterra–Poisson model of Eq. (1), we
can express an estimate of the conditioned response as
follows:

YðDnÞ ¼ k1 1þ k2ðDnÞ
k1

þ k3ðDn;DnÞ
k1

� �
; ð7Þ

where the term 1þ k2ðDnÞ
k1
þ k3ðDn;DnÞ

k1

� �
is an estimate of

the PIFF.

Impulse train function (ITF)

A more recent STP descriptor has been the Impulse
Train Function (ITF), defined as the ratio of the
conditioned response evoked by each impulse of an

impulse train stimulus over the unconditioned
response evoked by the first impulse of the impulse train
stimulus. Mathematically, the ITF can be expressed as:

ITFðDniÞ ¼
Yi

Y1
; ð8Þ

where Y1 is the amplitude of the population spike re-
sponse to the first impulse, Yi is the amplitude of the
population spike response to the i-th impulse, Dni is the
interimpulse interval between the first impulse and the
i-th impulse (i.e., Dni = ni ) n1 where n1 is the time of
occurrence of the first impulse and ni is the time of
occurrence of the i-th impulse [i > 1]). ITF values
greater than one indicate facilitation while ITF values
less than one are interpreted as depression.

Using the ITF defined in Eq. (8) as the STP
descriptor, we can express the amplitude of the popu-
lation spike response to the i-th impulse (Yi) in terms of
the unconditioned response Y1 and the interimpulse
interval Dni as follows:

Yi ¼ Y1ITFðDniÞ: ð9Þ

Considering the computed STP kernels and Eq. (1),
we can derive an estimate of the conditioned responses
(Yi), expressed mathematically as:

∆t2=800 ms

Population Spike Amplitude 

(b)

(a)

 t3 =150                                             t2 =850                                       t1 =1620                        t0 =1650   

 t3 =150                                          t2 =850                           t1 =1620                        t0 =1650   

Time (ms) 

Impulse Train  

∆t3=1400 ms 

FIGURE 2. Predictive Power of Kernels. (a) A series of input electrical stimuli applied through a stimulating electrode to the
Schaffer Collaterals. (b) The corresponding population spikes recorded. The amplitude of population spike was measured as the
distance between the population spike minimum and the projection of the minimum on the line that joins the two positive peaks.
The amplitude of the response for the last impulse (bold arrow, at 1650 ms) can be estimated using the first order kernel, the
second order kernel, the third order kernel and Eq. (1). That is:

yð1650Þ ¼

k1 þ k2ðDt1Þ þ k2ðDt2Þ þ k2ðDt3Þ
þ k3ðDt1; Dt1Þ þ k3ðDt1; Dt2Þ þ k3ðDt1; Dt3Þ
þ k3ðDt2; Dt1Þ þ k3ðDt2; Dt2Þ þ k3ðDt2; Dt3Þ
þ k3ðDt3; Dt1Þ þ k3ðDt3; Dt2Þ þ k3ðDt3; Dt3Þ

¼ k1 þ k2ðDt1Þ þ k2ðDt2Þ þ k2ðDt3Þ
þ k3ðDt1; Dt1Þ þ k3ðDt2; Dt2Þ þ k3ðDt3; Dt3Þ

þ 2 � k3ðDt1; Dt2Þ þ 2 � k3ðDt1; Dt3Þ þ 2 � k3ðDt2; Dt3Þ:
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Yi ¼ k1 1þ 1

k1

X

i

k2ðDniÞþ
1

k1

X

1< j< i

1< k< i

k3ðDnj;DnkÞ

0
BBBBB@

1
CCCCCA
;

ð10Þ

where the term 1þ 1
k1

P
i

k2ðDniÞ þ 1
k1

P

1 < j < i
1 < k < i

k3ðDnj;DnkÞ

0
BB@

1
CCA

is an estimate of the ITF.
Finally, the PIFF, estimated based on two impulse

model, can still be used to predict the amplitude in
fixed frequency impulse trains using the following
equation:

Yi ¼ Yi�1PIFFðDnÞ; ð11Þ

where Yi is the predicted amplitude of the population
spike to the i-th impulse, Yi ) 1 is the amplitude of the
population spike to the i-th ) 1 impulse, and Dn is the
fixed interimpulse interval.

RESULTS

The kernel STP descriptors (k1, k2, k3) of the CA1
hippocampal region were computed using experimen-
tal data from in vitro preparations of hippocampal
slices. We used fixed amplitude Poisson distributed
RIT stimuli (2 Hz average rate). We applied the stimuli
at the Schaffer collaterals and we recorded the result-
ing population spikes at the CA1 cell body layer.

CA1 STP Characteristics

Six experiments were conducted using random im-
pulse train stimulation in the CA1 hippocampus in vi-
tro. The stimulus level was chosen to correspond to
values below 15% of the maximum recorded response
(947 ± 73 lV) reported in the I/O curve. The data
were analyzed using the adapted Volterra–Poisson
method outlined in the Materials and Methods section.
The number of Laguerre functions (L = 9 for all six
datasets) and alpha (a = 0.93 for five datasets and
0.94 for one dataset) were determined using the pre-
diction NMSE.15 The first, second, and third order
STP descriptors were computed. The mean population
spike (k1) was 257.43 lV (SD 31.45 lV). Comparing k1
to the average response value reported by the I/O curve
(147.77 ± 24.21 lV), we see that the 2 Hz RIT stimuli
caused approximately a 70% increase in the baseline
(from 147.77 to 255.69 lV).

The computed second order STP descriptors (k2)
were characterized by a fast rising facilitatory phase
[0–25 ms], a peak between 25 and 50 ms, a fast
declining facilitatory phase [50–200 ms], and a slow
inhibitory relaxation phase [200–2000 ms]. The extent
(memory) of k2 was in the range of 1600–2000 ms. The
peak of k2 was 252% (SD 10.1%) of the value of the
corresponding k1 and occurred at 27 ms (SD 1.82 ms).
Figure 3 shows the averaged second order kernel (k2)
function across six experiments in black delimited by
one standard deviation in gray.

The computed third order STP descriptors (k3) were
characterized by an inhibitory area in the range of (5–
100 ms, 5–100 ms), a peak inhibition at the (35 ms,
35 ms), and a mild facilitatory area in the range of (5–
50 ms, 100–200 ms) and (100–200 ms, 5–50 ms). The
inhibitory peak of k3 was –75.1% (SD 11.2%) of the
value of the corresponding k1. The extent (memory) of
k3 was in the range of 250 ms. Figure 4b shows the
averaged third order kernel while Fig. 4b show the
variation of the third order kernel values at one stan-
dard deviation.

A Mathematical Model for STP

The computed STP kernel estimates in conjunction
with Eq. (1) define a mathematical model of STP: the
third order Volterra–Poisson STP model. The repre-
sentation of STP by the Volterra–Poisson model pro-
vides a tool to predict population spike response
amplitudes to arbitrary input patterns of impulse trains.

The prediction of the output provides a quantita-
tive measure to evaluate the quality of the kernels and
the accuracy of the model. In particular, we used the
prediction error in the form of the Normalized Mean
Square Error (NMSE), defined as the ratio of the
sum-of-squares of the output residuals over the

FIGURE 3. Second order kernel (black curve) delimited by
one standard deviation (gray curves).
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sum-of-squares of the recorded response amplitudes
to evaluate the accuracy of the kernels and the STP
model. Small NMSE values indicate that the STP de-
scriptors sufficiently captured the underlying nonlinear
STP dynamics and that the associated STP model is
reliable. Large NMSE values suggest that higher order
terms (fourth, fifth etc.) need to be included or that the
data were noisy. The third order Volterra–Poisson STP
model for the CA1 case exhibited an average in-sample
predictionNMSEof 19.7% (SD4.90%)when thefirst and
second order terms were used, and 5.3% (SD 0.5%) when
the first, second, and third order terms were included in
the model. The third order term improved the in-sample
prediction accuracy of the model by 14.4%.

One of the biggest strengths of the proposed Vol-
terra–Poisson model of STP is that it provides response

prediction to arbitrary impulse sequence stimuli. We
demonstrate this by employing the in-sample and the
out-of-sample prediction paradigm that involves the
following steps: (1) STP kernels were computed using
data from all the recorded datasets; (2) the stimulus
from all the datasets was used as the input/output to
estimate the third order model, and the resulting model
response to a specific subset (in-sample prediction) was
compared to the corresponding recorded response; (3)
recordings excluding a specific subset were used again
as the input/output to estimate the third order model,
and the resulting model response to the excluded
stimuli (out-of-sample prediction) was compared to the
corresponding recorded response. Figure 5a shows a
segment of in-sample model response (circles) and the
corresponding data points of the recorded response

FIGURE 4. Third order kernel. (a) Third Order kernel calculated using the averaged Laguerre coefficient values. (b) Third order
kernel standard deviation.
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(diamonds). Figure 5b shows a segment of out-of-
sample predicted response (squares) and the corre-
sponding data points of the recorded response (dia-
monds). In the case shown in Fig. 5, comparison of the
out-of-sample predicted response to the corresponding
in-sample predicted response showed that NMSE val-
ues were very close, i.e., 18.72% (in-sample) vs. 22.32%
(out-of-sample) using the first and second order terms
and 5.96% (in-sample) vs. 8.14% (out-of-sample) using
the first, second, and third order terms. In general, the
third order model average in-sample prediction NMSE
was 5.25% (SD 0.6%) and the average out-of-sample
prediction NMSE was 7.24% (SD 1.8%). The low
NMSE values validated the accuracy of the third order
model and confirmed the importance of the third order
term.

Kernel STP Descriptors and the Paired Impulse
Facilitation Function (PIFF)

The computed STP prediction model was tested for
the ability to predict paired impulse generated data. Six
experiments were conducted using paired impulse
stimuli with impulse intervals in the range of [10–
600 ms] with the same experimental setup and aCSF
solution as in the case of random impulse train stimuli.
We compared the predictive capability of the PIFF and
the third order Volterra–Poisson model. First, we used
the Volterra–Poisson STP model to predict the con-
ditioned response amplitude out of an impulse pair at

various interimpulse intervals. Figure 6a shows the
average experimental values of the conditioned re-
sponse amplitude (black line), the predicted condi-
tioned response amplitude values using the first two
terms (first and second order term) of the Volterra–
Poisson model (light gray line), and the predicted
conditioned response amplitude using all three terms
of the model (dark gray line) over a range of interim-
pulse intervals [10–600 ms]. The resulting NMSE was
16.5% when the first two terms were used and 4.83%
when all three terms were included. Clearly, the Vol-
terra Poisson STP model could predict accurately the
conditioned response amplitude, especially when the
third order term was included. Next, we used the PIFF
to predict population spike response amplitudes from
the RIT stimulus experiment and compared it to the
corresponding predicted response using the third order
Volterra–Poisson STP model. The NMSE was 7.29%
when the PIFF (Eq. 3) was used and 2.56% when the
Volterra–Poisson STP model was used (Eq. 1). Fig-
ure 6b shows the recorded amplitude responses (dia-
monds), the predicted responses using PIFF (squares),
and the Volterra–Poisson STP model prediction (gray
circles). A comparison between predicted responses
using the PIFF and predicted responses using the
Volterra–Poisson STP model suggests that the third
order Volterra–Poisson STP model can predict popu-
lation spike response amplitudes evoked by RIT
stimuli better than PIFF. This may be attributed to the
fact that neither the estimation of PIFF nor the PIFF

0

250

500

3.4 3.6 3.8 4 4.2 4.4

Time (s)

stl
ov

orci
M

Recorded Values In-Sample Model  Prediction

0

250

500

3.4 3.6 3.8 4 4.2 4.4

Time (s)

stl
ov

orci
M

Recorded Values Out-of-Sample Model Prediction

(a)

(b)

FIGURE 5. Predictive Power of kernels. (a) Segment of recorded responses (black diamonds) and In-Sample predicted responses
(light gray circles). (b) Segment of recorded responses (black diamonds) and Out-of-Sample predicted responses (dark gray
squares).
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based prediction took into account interactions be-
tween the current impulse stimulus and impulse stimuli
beyond the previous one.

Kernel STP Descriptors and the Impulse Train Function
(ITF)

The developed third order Volterra–Poisson STP
model was used to predict fixed frequency train data
(Eq. 8). Four experiments were conducted using im-
pulse train stimuli at the following interimpulse inter-
vals: 40, 80, 100, 150, and 200 ms. The corresponding
population spike amplitude responses up to the 4th
impulse are shown in Fig. 7a–e for the 40, 80, 100, 150,
and 200 ms interimpulse intervals, respectively (black
diamonds). The corresponding predicted values using
the presented Volterra-Poisson STP model are also
shown in Fig. 7. The light gray line with black crosses
denotes predicted amplitude responses using the PIFF.
The light gray triangles denote predicted amplitude
responses when only the first two terms of the model
were used and the dark gray squares denote the pre-

dicted amplitude responses when all the three terms of
the Volterra–Poisson model were used. The average
prediction NMSE was 65.3% for the 40 ms, 77.4% for
the 80 ms, 163.3% for the 100 ms, 94.7% for the
150 ms, and 17.9% for the 200 ms interimpulse interval
when the PIFF was used. The average prediction
NMSE was 151.1% for the 40 ms, 16.4% for the 80 ms,
7.23% for the 100 ms, 11.68% for the 150 ms, and
11.81% for the 200 ms interimpulse interval when the
first two terms were used. The average prediction
NMSE using all the terms of the model was 17.3% for
the 40 ms, 1.36% for the 80 ms, 1.47% for the 100 ms,
10.55% for the 150 ms, and 11.14% for the 200 ms
interimpulse intervals. It can be readily concluded that
the third order STP model was able to predict the
values of the impulse trains with higher accuracy.

It should also be noted that in the case of the 40 ms
impulse train, the inclusion of the third order term
brought the NMSE down from 151 to 17.3% in the
case where the first and the second order terms were
used, an impressive 133%. This can be explained by the
significant inhibition behavior of the third order kernel
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FIGURE 6. (a) A plot of recorded conditioned responses (black) predicted using the Volterra–Poisson STP model (predicted
conditioned responses using the first and second order kernels are shown in light gray; predicted conditioned responses using
the first, second, and third order kernels are shown in dark gray). (b) Sample of the recorded population spike amplitude responses
to RIT stimuli (diamonds), the predicted responses using PIFF (squares), and the Volterra–Poisson STP model (circles). A com-
parison between predicted responses using the PIFF and predicted responses using the Volterra–Poisson STP model suggests
that the third order Volterra–Poisson STP model can better predict the population spike response amplitudes evoked by the RIT
stimuli.
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in the range of (5–50 ms, 5–50 ms) with a negative
peak around (35 ms, 35 ms) [Fig. 4a]. In contrast to
the third order model, the PIFF failed significantly in
predicting the responses amplitude at 100 and 150 ms
intervals since it does not take into consideration
the inhibitory component inherent in the stimulation
history.

DISCUSSION

Traditionally, CA1 short-term plasticity has been
investigated using paired impulse stimuli with fixed
amplitude and variable interimpulse interval and im-
pulse trains of fixed amplitude and frequency, varying
the frequency from one experimental run to another.
In each case, the behavior of the STP mechanisms has
been captured by description functions defined

arbitrarily by each method, i.e., the Paired Impulse
Facilitation Function (PIFF) and the impulse train
function (ITF). A more realistic paradigm for charac-
terizing STP is the application of point-process stimuli
such as impulse train stimuli with randomly varying
interimpulse interval2,30,32,34 and natural stimuli pat-
terns.10 Point-process stimuli trigger nonlinear dynamic
behaviors that are more complex than those evoked by
pairs or short trains of impulses. This type of nonlinear
dynamic complexity requires the scalable and mathe-
matically rigorous modeling approach provided by the
Volterra–Poisson method. The computed Volterra–
Poisson kernels captured quantitatively the dynamic
nonlinearties of the CA1 STP with high degree of
accuracy as supported by the small predictive error of
the proposed third order Volterra–Poisson STP model.

The computed second order STP descriptor (k2) was
characterized by a fast rising facilitatory phase
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Recorded population spike amplitudes are represented as black diamonds. ITF values predicted using the PIFF are shown in black
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predicted using the third order model are shown in dark gray squares.
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[0–25 ms], a peak between 25 and 50 ms, a fast
declining facilitatory phase [50–200 ms], and a slow
inhibitory relaxation phase [200–2000 ms]. The mem-
ory of the second order dynamics (reflected by the
extent of k2) in the CA1 system in vitro was found to be
at most 2 s. The temporal extent of k2 is in agreement
with a study conducted by Fuhrman et al.13 showing
that depressing and excitatory synapses are modulated
by 4–8 presynaptic spikes. The third order kernel had
an inhibitory area (0–100,0–100) ms indicating that in
a high frequency train (10–50 Hz), the second response
is always larger then the third one, a property that may
have a physiological significance.5

The third order Volterra–Poisson STP model was
able to predict in-sample and out-of-sample RIT data
accurately. A comparison between the third order Vol-
terra–Poisson model and the commonly used PIFF and
ITF functions was undertaken to further test the pre-
dictive power of the proposed model. The PIFF did not
predict random impulse train responses as accurately
while the calculated kernels were able to approximate
the PIFF characteristics. The third ordermodelwas able
to track the STP dynamics of short trains. ITF, on the
other hand, could not be used in a meaningful way to
predict random interval train data. Hence, the resulting
kernel expansion provided a goodprediction framework
of impulse trains drawn from the stimulus ensemble of
Poisson distributed impulse trains. The third order
model also provided a good description of the responses
to other classic impulse trains (paired impulse and fixed
frequency impulse trains). In general, if a third-order
model does not provide adequate prediction power for
other classes of stimuli, the order of the estimated ker-
nels can be tuned by testing higher order models.

In contrast to the traditional PIFF studies8,19,26 our
results suggest that long intervals induce inhibition
under continuous stimulation leading to a balance
between excitation and inhibition. These results par-
allel findings by Fuhrman et al.13 indicating that
depressing and excitatory synapses are optimized in the
0.5–5 Hz and 9–70 Hz frequency range, respectively.

This frequency optimization might play a role in
Long-Term Potentiation (LTP) and Depression
(LTD). LTP and LTD are two processes that are
thought to play a major role in memory formation
through Hebbian learning. LTP is usually elicited
in vitro using high frequency trains (50–200 Hz) that
correspond to the facilitation range of the second order
kernel. LTD, on the other hand is usually elicited
in vitro using low frequency trains (�1 Hz) that cor-
respond to the inhibitory region of the second order
kernel. Our results suggest that an active cell (con-
stantly bombarded by action potentials) is optimized
for the induction process of LTP and LTD, an obser-
vation not readily seen using PIFF.

In a recent study, using natural pattern of stimula-
tion,10 it was concluded that the response amplitude is
not a function of the preceding interimpulse interval.
We would argue that the results obtained did not show
any temporal relationship because the analysis of the
burst activities found in the natural pattern did not
include a model that could capture complex spike
interactions such as the one used in this paper.

The work presented in this paper lays the founda-
tion for understanding at the electrophysiological level
how the hippocampus creates associations dynamically
between different sensory modalities in order to learn
and remember spatial relations among multiple, com-
plex environmental cues. Although, it studies the sin-
gle-input/single-output case, the proposed model can
be extended to include multi-inputs and multi–outputs
with the potential to offer a deeper understanding of
how different pathways interact in the hippocampus
(e.g., the medial and lateral pathways in the Dentate
Gyrus, and the commissural fibers with the Schaffer
collaterals in the CA1 region) and the brain in general.
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