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Abstract—This paper presents the first application of a no
methodology for nonstationary nonlinear modeling to neurob
logical data consisting of extracellular population field pote
tials recorded from the dendritic layer of the dentate gyrus
the rabbit hippocampus under conditions of stimulus-indu
potentiation. The experimental stimulus was a Poisson rand
sequence with a mean rate of 5 impulses/s applied to
perforant path, which was sufficient to induce a progress
potentiation of perforant path-evoked granule cell respon
The modeling method utilizes a novel artificial neural netwo
architecture, which is based on the general time-varying V
erra model. The artificial neural network is composed of p
allel subnets of three-layer perceptrons with polynomial acti
tion functions, with the output of each subnet modulated by
appropriate time function that models the system nonstation
ties and gives the summative output its time-varying charac
istics. For the specific application presented herein these
functions are sigmoidal functions with trainable slopes a
inflection points. A possible mapping between the nonstati
ary components of the model and the mechanisms underl
potentiation changes in the hippocampus is discussed. ©1999
Biomedical Engineering Society.@S0090-6964~99!00305-7#

Keywords—Nonstationary nonlinear modeling, Volterra mo
els, Time-varying artificial neural network, Dentate gyrus, P
tentiation, Hippocampus.

INTRODUCTION

One of the most challenging issues in the mathem
cal modeling of neurobiological systems from stimulu
response data has been the occasional presence of
stationarities in the functional characteristics of so
neurobiological processes. This challenge is further a
mented when these systems exhibit nonlinear dynam
Although several general nonlinear modeling methodo
gies have been proposed using Volterra models,11–14

nonlinear auto-regressive moving average with ex
enous variable models4,10 or artificial neural
networks,4,5,15–17,19 the development of modeling fo
nonstationary systems has been lagging. The nonsta
ary problem has been dealt with either in a piecew
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quasistationary fashion or by means of adaptive recurs
algorithms that track the time-varying parameters of
system,1 but do not provide models of global validity
Models of global validity can be obtained by a meth
based on ensemble averaging11 and by a nonparametric
temporal expansion method when the input is wh
noise.11,12 The method proposed herein removes this
strictive input requirement.

The proposed methodology for the modeling of no
stationary and nonlinear systems was introduced in R
7 and is suitable for systems with finite memory rece
ing broadband stimulus signals. This approach employ
novel artificial neural network~ANN! architecture, which
is based on the theory of functional expansions of n
linear, nonstationary systems~time-varying Volterra
series!,13 and tapped-delay feed-forward ANNs with
single hidden layer and polynomial activatio
functions.15 The resulting architecture contains a speci
structure of explicit nonstationarity in the time-varyin
network ~TVN! model, with certain unknown param
eters, which are estimated iteratively using the delta-b
delta training rule.8 Provided that we can select th
proper form of nonstationarity in the TVN model for
given application, this approach can provide a practi
solution to a very important and difficult problem.

This paper presents the application of this gene
methodology to an actual neurophysiological system a
demonstrates its efficacy in a practical context. The c
sen nonstationary system is the dentate gyrus of the
bit hippocampus under conditions of short-ter
potentiation.2

METHODOLOGY

The Volterra approach has been used for the mode
of nonlinear physiological systems, when no prior info
mation is available about the internal characteristics
such systems or when the complexity of the system p
vents the postulation of explicit parametric models.12
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582 IATROU, BERGER, and MARMARELIS
It has been extended to the modeling of discrete-ti
nonlinear nonstationary systems,12,13 whereby the input–
output relationship is given by

y~n!5k0~n!1T (
m150

M

k1~n;m1!x~n2m1!

1T2 (
m150

M

(
m250

M

k2~n;m1 ,m2!x~n2m1!

3x~n2m2!1¯ , ~1!

wherex(n) denotes the input data sequence,y(n) is the
output data sequence,M is the finite memory of the
system,T is the sampling interval, and$ki% are the Vol-
terra kernels of the system that describe its nonlin
dynamics and are now time varying.

If we consider an expansion of the kernels on a co
plete temporal basis$ f j (n)% over the data record@0,R#,
then the Volterra series of Eq.~1! becomes

y~n!5(
j

f j~n!Fa j
~0!1 (

m150

M

a j
~1!~m1!x~n2m1!

1 (
m150

M

(
m250

M

a j
~2!~m1 ,m2!x~n2m1!

3x~n2m2!1¯G , ~2!

where

k1~n;m1!5(
j

f j~n!a j
~1!~m1!, ~3!

k2~n;m1 ,m2!5(
j

f j~n!a j
~2!~m1 ,m2!, ~4!

etc. Equation~2! can be written as

y~n!5(
j

f j~n!yj~n!, ~5!

where

yj~n!5a j
~0!1 (

m150

M

a j
~1!~m1!x~n2m1!

1 (
m150

M

(
m250

M

a j
~2!~m1 ,m2!

3x~n2m1!x~n2m2!1¯ . ~6!
Note that the signalyj (n) is the output of a time-
invariant Volterra system with kernels$a j

( i )% and input
x(n).

The basic mathematical relationships between tim
invariant Volterra models and feedforward ANNs ha
been addressed by Marmarelis and Zhao,15 and it has
been shown that the two models become equivalen
the activation functions of the single hidden layer a
allowed to be distinct polynomials with trainable coef
cients. The specific relations between the Volterra k
nels and the network parameters are given in Eqs.~A5!–
~A7! of the Appendix. Note that other activatio
functions ~of nonpolynomial form! can be selected a
more physiologically meaningful in certain application
as long as they form a complete basis. The equivale
with the Volterra model is defined through Taylor seri
expansions~if analytic! or Weierstrass polynomial ap
proximations~if nonanalytic!.

The proposed method employs the novel network
chitecture of Fig. 1~termed TVN! to obtain models of
time-varying Volterra systems using the delta-bar-de
training rule6,8 for the training of the unknown network
parameters. Each branch of the TVN in Fig. 1 produc
an output that corresponds to each one of the term
the summation of Eq.~5!. Thus, the network configura
tion shown in Fig. 1 is equivalent to the time-varyin
Volterra model of nonstationary nonlinear system
where the hidden units have distinct polynomial activ
tion functions and the modulating functions$ f j (n)% have
characteristic parameters trainable with input–out
data. We will refer to each branch of the TVN as
subnet. The novelty of the method is the introduction
a time-varying modulating function at the output of ea
subnet. A description of the TVN and the training rel

FIGURE 1. Time-varying network „TVN… architecture compat-
ible with the general time-varying Volterra model. It is com-
prised of parallel feedforward subnets, with a single hidden
layer having polynomial activation functions and an output
modulating function „modulator …. The modulators ˆf j„n …‰ rep-
resent the nonstationarity characteristics of the system. The
stationary component of the system is represented by the
subnet corresponding to f 0„n …51.
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583Nonstationary Modeling of Potentiation
tions for the novel modulating functions are given in t
Appendix.

The efficacy of this approach in modeling nonstatio
ary, nonlinear systems has been demonstrated thro
computer simulations for several types of modulati
functions ~simply termed ‘‘modulators’’!, such as tran-
sient, polynomial, periodic functions and combinatio
thereof.7 In this paper, we present as an illustrative e
ample the transient case of two sigmoidal modulat
because it relates to the specific nonstationarity of
analyzed real data.

SIMULATION EXAMPLE

As an illustrative simulation example, we consider t
time-varying second-order Volterra system of Fig.
whereL1, L2, andL3 are linear filters andN1, N2, and
N3 are static second-degree polynomial nonlinearit
The stationary path has the linear filterL1 and the static
nonlinearity N1. The two nonstationary paths have tw
different linear filters:L2 andL3 followed by the static
nonlinearitiesN2 andN3, respectively.

For the generation of the system data, we use 1
point Gaussian white noise input. The first nonstation
path (L22N2) has the sigmoidal modulatorf 1(n)
51/$11exp@20.03(n2250)#% and the second one (L3
2N3) has the sigmoidal modulatorf 2(n)51/$11exp
@20.015(n2580)#%. The chosen linear filters have im
pulse response functions

L1:h1~n!50.795039 exp~2n/2!,

FIGURE 2. Nonlinear nonstationary system with one station-
ary and two nonstationary components used as a simulation
example.
h

L2:h2~n!51.151676n2 exp~2n!,
~7!

L3:h3~n!50.41889n2 exp~22n/3!.

All the static nonlinearities are quadratic polynomia
with unity coefficients and zero constant terms.

The corresponding TVN architecture for the trainin
consists of one stationary subnet@ f 0(n)51# and two
nonstationary subnets with modulatorsf 1(n)51/$1
1exp@2b1(n2q1)#% and f 2(n)51/$11exp@2b2(n2q2)#%,
respectively. The training utilized the delta-bar-delta ru
and yielded excellent estimates for the impulse respon
h1, h2, and h3 after 200 iterations. The estimated p
rameters for the sigmoidal modulators and for the po
nomial activation function are given in Table 1. Figure
shows the estimates for the impulse responses of
linear filtersL1 ~stationary path!, L2 ~first nonstationary
path!, andL3 ~second nonstationary path!, as well as the
convergence patterns for the exponentsb1 , b2 , the in-
flection pointsq1 , q2 , two representative weights, tw
representative polynomial coefficients, and the out
root-mean-square~rms! error. It is evident that satisfac
tory convergence is achieved in 200 iterations.

REAL DATA ANALYSIS

The main goal of this paper is the application of t
method to actual experimental data. The method w
applied to neurobiological data consisting of extracellu
population field potentials recorded from the dendri
layer of the dentate gyrus of the rabbit hippocampus. T
experimental stimulus was a Poisson random sequenc
impulses applied to the perforant path, the major exc
tory input to granule cells, the principal neurons of t
dentate gyrus. The Poisson random process had a m
rate of 5 impulses/s, which was sufficient to induce
progressive potentiation of perforant path-evoked gran
cell response.2,3,18 The data were sampled with a sam
pling frequency of 10 kHz, and the first 90 impulse
were used for the analysis presented in this section
was found that the nonstationary behavior was more e
dent in the first 90 pulses, and this fact was demonstra
by successfully predicting the response to the 30 pu
TABLE 1. The exact and estimated parameters of the sigmoidal modulating functions and coefficients of the quadratic polynomial
activation function of each hidden unit of the three subnets in the simulation example.

Stationary subnet First nonstationary subnet Second nonstationary subnet

exact estimate exact estimate exact estimate

Zeroth-order coefficient 0 0.136413E-06 0 0.523713E-05 0 0.948003E-05
First-order coefficient 1 0.9999739526 1 0.9999995326 1 1.0000180649
Second-order coefficient 1 0.9999455014 1 0.9999979664 1 1.0000292888
Exponents (b1 ,b2) ¯ ¯ 0.03 0.299999294 0.015 0.0149998286
Inflection points (q1 ,q2) ¯ ¯ 250 249.999799 580 579.999661
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584 IATROU, BERGER, and MARMARELIS
following the first 90 using the estimated model whi
exhibits essentially stationary behavior by the end of
90 pulses. Because the power of the output signal
negligible above 3 kHz, this dataset was downsamp
by a factor of 3 following lowpass filtering to avoid an
aliasing.

Initially, we followed a piecewise stationary approa
to explore whether this biological system exhibits a tim
varying behavior. The input–output data were partition
in five segments so that at least 800 samples~or almost
265 ms! elapse between the last impulse of each segm
 t

and the first impulse of the following segment in order
eliminate overlapping dynamics between segments.
addition to that, the minimum size of each segment w
selected so that reasonable estimation accuracy ca
achieved to follow changes in the dynamics of the s
tem. The number of impulses in each segment were:
~10,500 sample points!, 21 ~9024 sample points!, 20
~12,737 sample points!, 14 ~9700 sample points!, and 16
~9380 sample points! in sequential order.

A stationary ANN with polynomial activation func
tions was used for the training. The selected parame
FIGURE 3. Results for the simulation example with one stationary and two nonstationary subnets with modulating functions:
f 1„n …51/ˆ11exp †2b1„n2q1…‡‰ and f 2„n …51/ˆ11exp †2b2„n2q2…‡‰; „a…, „b…, „c… actual „solid line … and estimated „1… impulse re-
sponses for filters L1, L2, and L3, respectively; „d… the normalized output rms error vs training iterations; „e…, „f… convergence
patterns of the modulator exponents b1 and b2, respectively; „g…, „h… convergence patterns of the modulator inflection points
q1 and q2, respectively; convergence patterns of „i… the fifth weight of the stationary subnet, „j… the fifth weight of the first
nonstationary subnet, „k… the second-degree coefficient of the stationary subnet and „1… the second-degree coefficient of the
first nonstationary subnet. All parameters converge to the exact values within 200 iterations.
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FIGURE 3. „Continued.…
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were M5400, K53, R52 ~i.e., 401 input units, three
hidden units and second-degree polynomial activat
functions!. These parameters were chosen by succes
trials using an output prediction error criterion. The to
number of the estimated parameters is@K3(M1R
11)#51209, which is about 10%–14% of the numb
of datapoints in each segment, thus avoiding overfitti
The model predictions were good approximations of
real output signals for all segments as illustrated in F
4, where representative segments are shown.

The responses to an impulse for each segment
presented in Fig. 5. Note that for a Volterra~nonlinear!
system, the response to an impulse includes the dia
nals of the high-order kernels in addition to the firs
order ~linear! kernel. An initial negativity occurs within
the first five time lags for all segments, and represe
the onset of an extracellular current sink~population
excitatory postsynaptic potential! ~EPSP! generated as a
consequence of the intracellular depolarization of gran
cell dendrites by perforant path input. The first positiv
which follows represents an extracellular current sou
~compound action potential, or population spike! pas-
sively generated as a consequence of action poten
occurring in granule cell bodies located distally~thus, the
reversed polarity!. This positivity increases from the firs
to the third segment. A second positivity occurrin
within the first ten time lags, representing secondary
tion potential discharges, appears in the second segm
and increases in amplitude from the second to the th
segment. In the last two segments both positivities h
almost equal amplitudes, which are smaller than the
spective ones in the third segment. There is also a t
peak within the same time period~first 16 ms!, which
appears in the third segment and may increase in am
tude in the next segment.
e

e

-

s

t

-

This preliminary analysis of the input/output data pr
vided us with useful information regarding the way
which the system changed over time. The motivati
was to incorporate this information in selecting the a
propriate form of a global nonstationary model~i.e., the
form of the ‘‘modulators’’ discussed previously!. Again
the parameters of the modulators would be determi
from the training of the network.

The observation that the responses to an impulse
hibited distinct peaks that became more noticeable w
time and remained almost unchanged during the last
segments led us to the selection of sigmoidal modulat
similar to those discussed in the Simulation Exam
section.

The fact that the first 16 ms of the responses to
impulse are of primary physiological interest, combin
with our desire to facilitate the convergence of the alg
rithm by reducing the length, led us to the adoption o
surrogate set of input/output data. The surrogate ou
file consists of the first 50 sample points~almost 16.34
ms! of each of the five responses to an impulse~for each
segment! and the input file is composed of the corr
sponding impulses at the beginning of each segm
~Fig. 6!. Notice that the abscissa is not real time, beca
of the elapsed time between segments. In real time,
first impulse is presented at 0 ms, the second at the 3
ms, the third at the 6,508 ms, the fourth at the 10,753
and the last one at the 13,987 ms. Each response to t
input impulses lasts for 16.33 ms~or 50 sample points!.
Real time is used in the modulators of the TVN, but t
training takes place only over the aforementioned limit
surrogate data.

The TVN model used for training has one stationa
subnet and two nonstationary subnets with the aforem
tioned sigmoidal modulators. All subnets have one h
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FIGURE 4. Illustrative portions of the ex-
perimental output for each of the five seg-
ments of the input/output data †„a…–„e…‡.
The predictive ability of the models is evi-
dent.
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587Nonstationary Modeling of Potentiation
den unit, 50 input units and second-degree polynom
activation functions. The delta-bar-delta rule was us
for training all parameters. The trained parameters w
the 50 weights and the three coefficients of the activat
functions ~including the constants! for each subnet, and
the parametersb1 , q1 , b2 , q2 of the modulators.

The resulting estimates of the impulse responses
the corresponding linear filters of the stationary and n
stationary paths of the model are shown in Fig. 7. T
estimated coefficients of the polynomial activation fun
tions for each subnet and the parameters of the mod
tors are given in Table 2.

The output normalized rms error was 4.819%. T
resulting modulators are depicted in Fig. 8. The upw

FIGURE 5. The model based response to an impulse for the
first „a…, second „b…, third „c…, fourth „d…, and fifth „e… seg-
ments. The time-dependent changes due to potentiation are
evident.
f

-

transition of the first modulator begins at the beginni
of the third segment and lasts for almost 5000 sam
points ~or 1.5 s!. The downward transition of the secon
modulator begins at the end of the second segment
lasts for almost 2500 sample points~or 750 ms! entering
the third segment.

Thus, the first nonstationary path is ‘‘off’’ during th
first two segments and ‘‘on’’ during the last three se
ments~the transitional area extends over the first half
the third segment!. The second nonstationary path
‘‘on’’ during the first two segments and ‘‘off’’ during
the last three segments~the transitional area extend
briefly over the end of the second segment and the
ginning of the third segment!. The estimated output is
depicted in Fig. 9. The estimated output for the last th
segments is almost identical to the corresponding r
output and constitutes a good prediction for the first t
segments.

This result demonstrates the ability of the propos
methodology to model an important class of nonstatio
ary systems with ‘‘on’’ and ‘‘off’’ switches that capture
different states that the system may assume over ti
Each switch will be a different subnet with a sigmoid
modulator introduced in the structure of the TVN mod

DISCUSSION

This strategy for identifying multiple nonstationaritie
with different characteristics raises the possibility of
mapping between the parallel paths of the TVN mod
and specific neurobiological mechanisms underlying
changes in the system state. The accuracy with wh
models achieved using the current implementation of
method represent both dominant and the subtler, deta
FIGURE 6. Surrogate input/
output data for the training of
the TVN model, which consists
of one stationary and two non-
stationary subnets with sigmoi-
dal modulators. The output sur-
rogate data is comprised of the
first 50 sample points of each of
the five responses to an im-
pulse. The input surrogate data
is comprised of the respective
impulses.
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FIGURE 7. Results of the training of the TVN model with one stationary and two nonstationary subnets with modulating
functions: f 1„n …51/ˆ11exp †2b1„n2q1…‡‰ and f 2„n …51/ˆ11exp †2b2„n2q2…‡‰. „a…, „b…, „c… Estimated impulse responses for filters
L1, L2, and L3, respectively; „d… the normalized output rms error over 1,500 iterations.
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alterations in the field potential wave form strengthe
this possibility. To use the data analyzed in the pres
study as an example, the mean rate and intensity
stimulation used to activate perforant path fibers led
overlapping EPSPs and thus a progressive memb
depolarization of granule cells. The rate of depolarizat
is countered by input from inhibitory interneurons, b
the prolonged depolarization leads to a failure of inhi
tory circuits. Although admittedly a simplification, th
second nonstationary path must reflect the collective
namics of the temporal summation of granule c
EPSPs, voltage-dependent conductances activated b
polarization and which in turn amplify the depolarizatio
further, and the progressive decline of inhibitory inp
When inhibition ultimately fails, there is a rapid trans
tion to a heightened level of depolarization, which ac
vates additional, high-threshold excitatory conductan
f

e

e-

~e.g., voltage-dependent calcium channels! underlying
the multiple population spikes. Stability is reached re
tively rapidly, but the system emerges with decided
different dynamics, the properties of which are captur
by the first nonstationary path. The parameters for
modulators,b and q, should reflect the dynamics of th
cellular processes underlying the transition from the l
excitability state to the high excitability state, which
this case would be determined primarily by voltag
dependent conductances. Effects dependent on volt
gated channels will evolve relatively rapidly~a time
scale of seconds! compared to state transitions mediat
by second messenger biochemical pathways that
have decay time constants of minutes or longer. For
reason, the steepness of the sigmoid functions show
Fig. 8 is reasonable.
TABLE 2. The estimated parameters of the sigmoidal modulating functions and coefficients of
the quadratic polynomial activation function of each hidden unit of the three subnets for the

experimental data.

Stationary
subnet estimate

First nonstationary
subnet estimate

Second nonstationary
subnet estimate

Zeroth-order coefficient 22.889714E-01 2.190199E-02 21.411698E-02
First-order coefficient 1.137932 28.164694E-01 27.851913E-01
Second-order coefficient 2.706528E-01 3.782539E-02 5.077590E-02
Exponents (b1 ,b2) 1.684263E-03 2.346762E-03
Inflection points (q1 ,q2) 23,267.8(6.98 s) 18,790.8(5.64 s)
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FIGURE 8. The estimated sig-
moidal modulators for the two
nonstationary subnets.
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A state transition governed predominantly by mu
slower molecular and cellular processes should be a
ciated with a smaller rate of change~assuming a sigmoid
modulator remains appropriate! that would be less
‘‘switch-like.’’ In this manner, the dynamics of the tw
nonstationary paths and the properties of their modu
tors should place useful constraints on candidate me
nisms. A rigorous testing of this interpretational a
proach requires a substantially simplified neurobiologi
preparation having fewer available mechanisms. In s
a simplified preparation, even subtle changes in
amplitude–time course of a bioelectric event are likely
be interpretable in terms of underlying molecular a
cellular processes. This constitutes the next step in
ploring the efficacy of this approach. Nonetheless,
presented results demonstrate the ability of the propo
methodology to extract useful information about the no
stationary dynamics of the system that is not curren
accessible by any other methodological means.

FIGURE 9. Experimental output „bottom trace … and predic-
tion „top trace … for the model with one stationary and two
nonstationary subnets.
-

-

-
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APPENDIX

Each subnet has (M11) input units, receiving values
corresponding to the stimulus epoch@x(n)...x(n
2m)...x(n2M )# at each time instant. Each hidden un
forms the weighted sum of the input values and tra
forms it nonlinearly by means of the respective activ
tion function. For example, if we callwj ( i ,m) the
weights for the j th subnet connecting them-lag input
value with thei th hidden unit, then the weighted sum

v j~ i ,n!5 (
m50

M

wj~ i ,m!x~n2m! ~A1!

is formed and transformed nonlinearly by the respect
polynomial activation function as

zj~ i ,n!5(
r 50

R

cj~ i ,r !@v j~ i ,n!# r , ~A2!

wherezj ( i ,n) is the output of thei th hidden unit of the
j th subnet at timen. In Eq. ~A2! cj ( i ,r ) are the coeffi-
cients of the polynomial activation functions in thei th
hidden unit of thej th subnet. Finally, assumingK hidden
units for each subnet
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590 IATROU, BERGER, and MARMARELIS
yj~n!5(
i 51

K

zj~ i ,n!, ~A3!

y~n!5(
j 50

L

f j~n!yj~n!, ~A4!

where y(n) is the model output,yj (n) is the output of
the j th subnet andf j (n) is the modulating function of
the j th subnet. For the stationary pathf 0(n)51.

Note that the kernels of each subnet in Eq.~6! can be
expressed in terms of the weights and the polynom
coefficients of this subnet. For instance

aj
~0!5(

i 51

K

cj~ i ,0!, ~A5!

aj
~1!~m!5(

i 51

K

cj~ i ,1!wj~ i ,m!, ~A6!

a j
~2!~m1 ,m2!5(

i 51

K

cj~ i ,2!wj~ i ,m1!wj~ i ,m2!. ~A7!

If we assume that the modulator of thej th subnet has
one unknown parameterpj , then the following expres-
sion is used for updating this parameter:

Dpj~k!5apDpj~k21!

1rp~k!@ ỹ~n!2y~n!#yj~n!
d f j~n!

dpj~k!
, ~A8!

where ỹ(n) is the measured output of the system,k
denotes the update index andrp , ap are the initial learn-
ing step and momentum for the parameterp of the
modulator, respectively. Note that the parameter upd
take place at each time pointn and after a complete
presentation of the entire training set, we continue w
successive iterations until the reduction in error becom
negligible. Thus, the update indexk is distinct from the
time indexn and the number of iterations.

It is critical to note that the step sizer ~for every
parameter! changes withk according to the delta-bar
delta rule12

Dr~k!5H k if S~k21!D~k!.0
2br~k! if S~k21!D~k!,0
0 otherwise

, ~A9!

where D(k) is the partial derivative of the error with
respect to the parameter which is updated at timek, and
s

S(k) is an exponentially weighted sum of the current a
past derivatives given by the first-order difference eq
tion

S~k!5~12j!D~k21!1jS~k21!. ~A10!

Therefore, the step sizes evolve differently for the va
ous parameters.

Using the chain rule of differentiation, we derive th
following updating expressions for the polynomial coe
ficients of the activation functions:

Dcj
~k!~ i ,r !5acDcj

~k21!~ i ,r !

1rc~k!@ ỹ~n!2y~n!# f j~n!v j
~r !~ i ,n!

~A11!

and for the in-bound weights of the hidden units:

Dwj
~k!~ i ,m!5awDwj

~k21!~ i ,m!

1rw~k!@ ỹ~n!2y~k!# f j~n!x~n2m!

3H(
r

rc j~ i ,r !v j
r 21~ i ,n!J , ~A12!

where rc , ac and rw , aw are the initial learning step
and momentum for the polynomial coefficients and t
in-bound weights of each subnet of the TVN, respe
tively.
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