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Abstract—This paper presents the first application of a novel
methodology for nonstationary nonlinear modeling to neurobio-
logical data consisting of extracellular population field poten-
tials recorded from the dendritic layer of the dentate gyrus of
the rabbit hippocampus under conditions of stimulus-induced

guasistationary fashion or by means of adaptive recursive
algorithms that track the time-varying parameters of the
system® but do not provide models of global validity.
Models of global validity can be obtained by a method

potentiation. The experimental stimulus was a Poisson random based on ensemble averadihgtnd by a nonparametric
sequence with a mean rate of 5 impulses/s applied to the temporal expansion method when the input is white

perforant path, which was sufficient to induce a progressive
potentiation of perforant path-evoked granule cell response.
The modeling method utilizes a novel artificial neural network

architecture, which is based on the general time-varying Volt-
erra model. The artificial neural network is composed of par-

allel subnets of three-layer perceptrons with polynomial activa-
tion functions, with the output of each subnet modulated by an
appropriate time function that models the system nonstationari-
ties and gives the summative output its time-varying character-

noise!*? The method proposed herein removes this re-
strictive input requirement.

The proposed methodology for the modeling of non-
stationary and nonlinear systems was introduced in Ref.
7 and is suitable for systems with finite memory receiv-
ing broadband stimulus signals. This approach employs a
novel artificial neural networkANN) architecture, which

istics. For the specific application presented herein these time 1S based on the theory of functional expansions of non-

functions are sigmoidal functions with trainable slopes and
inflection points. A possible mapping between the nonstation-

ary components of the model and the mechanisms underlying single

potentiation changes in the hippocampus is discussed19@9
Biomedical Engineering Societ}S0090-696499)00305-1

Keywords—Nonstationary nonlinear modeling, Volterra mod-
els, Time-varying artificial neural network, Dentate gyrus, Po-
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INTRODUCTION

One of the most challenging issues in the mathemati-

linear, nonstationary systemétime-varying Volterra
serie3,”® and tapped-delay feed-forward ANNs with a
hidden layer and polynomial activation
functions®® The resulting architecture contains a specific
structure of explicit nonstationarity in the time-varying
network (TVN) model, with certain unknown param-
eters, which are estimated iteratively using the delta-bar-
delta training rulé Provided that we can select the
proper form of nonstationarity in the TVN model for a
given application, this approach can provide a practical
solution to a very important and difficult problem.

This paper presents the application of this general
methodology to an actual neurophysiological system and

cal modeling of neurobiological systems from stimulus- gemonstrates its efficacy in a practical context. The cho-

response data has been the occasional presence of Nonsey nonstationary system is the dentate gyrus of the rab-
stationarities in the functional characteristics of some p;; hippocampus under conditions of short-term

neurobiological processes. This challenge is further aug- potentiatior?

mented when these systems exhibit nonlinear dynamics.

Although several general nonlinear modeling methodolo-

gies have been proposed using Volterra modfely!

nonlinear auto-regressive moving average with exog-

enous variable modétd® or artificial neural

networks? 11719 the development of modeling for

nonstationary systems has been lagging. The nonstation- The Volterra approach has been used for the modeling

ary problem has been dealt with either in a piecewise of nonlinear physiological systems, when no prior infor-
mation is available about the internal characteristics of

Address correspondence to V. Z. Marmarelis, OHE 500, USC, Los SUCh systems or when the complexity of the system pre-
Angeles, CA 90089-1451. Electronic mail: vzm@bmsrs.usc.edu vents the postulation of explicit parametric modéls.

METHODOLOGY
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It has been extended to the modeling of discrete-time X(@) ees x(nm) ees xn-M) X(n) see x(nm) see x(aM)
nonlinear nonstationary systerfs-> whereby the input— .
output relationship is given by

M
y(m=ko(m)+T X, ky(m;my)x(n—my)

M M
+T2 2> D ka(nimg,my)x(n—my)
m;=0 my,=0
y(n)

XX(N—my)+---, (1)
FIGURE 1. Time-varying network (TVN) architecture compat-
wherex(n) denotes the input data sequengén) is the ible with the general time-varying Volterra model. It is com-
; . prised of parallel feedforward subnets, with a single hidden
output da_ta sequenc<_M I_S the finite memory of the layer having polynomial activation functions and an output
system,T is the sampling interval, anfk;} are the Vol- modulating function  (modulator ). The modulators {f,(n)} rep-

terra kernels of the system that describe its nonlinear resent the nonstationarity characteristics of the system. The
dynamics and are now time varying stationary component of the system is represented by the
. . ) subnet corresponding to  fy(n)=1.
If we consider an expansion of the kernels on a com- P g o)
plete temporal basi§f;(n)} over the data recorfiOR],
then the Volterra series of Eql) becomes

M Note that the signaly;(n) is the output of a time-
y(n)=; f,(n) ajgo>+m20 a{P(my)x(n—my) ;(n(\;]a)mant Volterra system with kernefsyj’} and input
1= .
M M The basic mathematical relationships between time-
+ 2 E a(2>(ml my)x(n—m;) invariant Volterra models and feedforward ANNs have
My=0 my=0 ’ been addressed by Marmarelis and zZfaand it has
been shown that the two models become equivalent if
Xx(N—my)+---|, 2 the activation fgn_ctions of the_ singl_e hidden layer are
allowed to be distinct polynomials with trainable coeffi-

cients. The specific relations between the Volterra ker-
where nels and the network parameters are given in E4S)—
(A7) of the Appendix. Note that other activation
functions (of nonpolynomial form can be selected as
ky(n;my) =2, fi(naiP(my), (©) more physiologically meaningful in certain applications,
! as long as they form a complete basis. The equivalence
with the Volterra model is defined through Taylor series
(4) expansions(if analytic) or Weierstrass polynomial ap-
proximations(if nonanalytig.
The proposed method employs the novel network ar-
etc. Equation(2) can be written as chitecture of Fig. 1(termed TVN to obtain models of
time-varying Volterra systems using the delta-bar-delta
training rulé® for the training of the unknown network
y(n)=2 fi(n)y;(n), (5) parameters. Each branch of the TVN in Fig. 1 produces
J an output that corresponds to each one of the terms in
the summation of Eq(5). Thus, the network configura-
where tion shown in Fig. 1 is equivalent to the time-varying
Volterra model of nonstationary nonlinear systems,
_ ) where the hidden units have distinct polynomial activa-
yj(n)=qj +m2:0 aj”(my)x(n—my) tion functions and the modulating functiofi(n)} have
' characteristic parameters trainable with input—output
MooM , data. We will refer to each branch of the TVN as a
+m20 m20 af? (my,my) subnet. The novelty of the method is the introduction of
e a time-varying modulating function at the output of each
XX(N—myp)X(n—my)+---. (6) subnet. A description of the TVN and the training rela-

kz(nimlamz):; fi(naj?(my,my),

M
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FIGURE 2. Nonlinear nonstationary system with one station-
ary and two nonstationary components used as a simulation
example.

tions for the novel modulating functions are given in the
Appendix.
The efficacy of this approach in modeling nonstation-
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L2:h,(n)=1.15167&exp(—n),
(7)
L3:h3(n)=0.4188%2 exp( — 2n/3).

All the static nonlinearities are quadratic polynomials
with unity coefficients and zero constant terms.

The corresponding TVN architecture for the training
consists of one stationary subnffy(n)=1] and two
nonstationary subnets with modulators;(n)=1/1
+ex —by(n—qy)]} and f,(n) =141+ exd —by(n—qy) I},
respectively. The training utilized the delta-bar-delta rule
and yielded excellent estimates for the impulse responses
hl, h2, andh3 after 200 iterations. The estimated pa-
rameters for the sigmoidal modulators and for the poly-
nomial activation function are given in Table 1. Figure 3

ary, nonlinear systems has been demonstrated througtsnoWs the estimates for the impulse responses of the

computer simulations for several types of modulating
functions (simply termed “modulators), such as tran-
sient, polynomial, periodic functions and combinations
thereof’ In this paper, we present as an illustrative ex-
ample the transient case of two sigmoidal modulators
because it relates to the specific nonstationarity of the
analyzed real data.

SIMULATION EXAMPLE

As an illustrative simulation example, we consider the
time-varying second-order Volterra system of Fig. 2,
wherelL1, L2, andL3 are linear filters andN1, N2, and
N3 are static second-degree polynomial nonlinearities.
The stationary path has the linear fillet and the static
nonlinearity N1. The two nonstationary paths have two
different linear filters:.L2 andL3 followed by the static
nonlinearitiesN2 andN3, respectively.

For the generation of the system data, we use 1024
point Gaussian white noise input. The first nonstationary
path L2—N2) has the sigmoidal modulatof(n)
=1/{1+exd —0.03(h—250)]} and the second ond.8
—N3) has the sigmoidal modulatdi,(n)=1/1+exp
[-0.015(—580)]}. The chosen linear filters have im-
pulse response functions

L1:h4(n)=0.795039 exp—n/2),

TABLE 1. The exact and estimated parameters of the sigmoidal modulati

linear filtersL1 (stationary path L2 (first nonstationary
path, andL3 (second nonstationary pattas well as the
convergence patterns for the exponebis b,, the in-
flection pointsqg,, g,, two representative weights, two
representative polynomial coefficients, and the output
root-mean-squaréms) error. It is evident that satisfac-
tory convergence is achieved in 200 iterations.

REAL DATA ANALYSIS

The main goal of this paper is the application of the
method to actual experimental data. The method was
applied to neurobiological data consisting of extracellular
population field potentials recorded from the dendritic
layer of the dentate gyrus of the rabbit hippocampus. The
experimental stimulus was a Poisson random sequence of
impulses applied to the perforant path, the major excita-
tory input to granule cells, the principal neurons of the
dentate gyrus. The Poisson random process had a mean
rate of 5 impulses/s, which was sufficient to induce a
progressive potentiation of perforant path-evoked granule
cell responsé>!® The data were sampled with a sam-
pling frequency of 10 kHz, and the first 90 impulses
were used for the analysis presented in this section. It
was found that the nonstationary behavior was more evi-
dent in the first 90 pulses, and this fact was demonstrated
by successfully predicting the response to the 30 pulses

ng functions and coefficients of the quadratic polynomial

activation function of each hidden unit of the three subnets in the simulation example.

Stationary subnet First nonstationary subnet Second nonstationary subnet
exact estimate exact estimate exact estimate
Zeroth-order coefficient 0 0.136413E-06 0 0.523713E-05 0 0.948003E-05
First-order coefficient 1 0.9999739526 1 0.9999995326 1 1.0000180649
Second-order coefficient 1 0.9999455014 1 0.9999979664 1 1.0000292888
Exponents (b, ,b,) . 0.03 0.299999294 0.015 0.0149998286
Inflection points (q1,Q,) 250 249.999799 580 579.999661
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following the first 90 using the estimated model which and the first impulse of the following segment in order to
exhibits essentially stationary behavior by the end of the eliminate overlapping dynamics between segments. In
90 pulses. Because the power of the output signal wasaddition to that, the minimum size of each segment was
negligible above 3 kHz, this dataset was downsampled selected so that reasonable estimation accuracy can be
by a factor of 3 following lowpass filtering to avoid any achieved to follow changes in the dynamics of the sys-
aliasing. tem. The number of impulses in each segment were: 19
Initially, we followed a piecewise stationary approach (10,500 sample points 21 (9024 sample poinjs 20
to explore whether this biological system exhibits a time- (12,737 sample points14 (9700 sample poinijsand 16
varying behavior. The input—output data were partitioned (9380 sample poinjsin sequential order.
in five segments so that at least 800 samp@asalmost A stationary ANN with polynomial activation func-
265 mg elapse between the last impulse of each segmenttions was used for the training. The selected parameters

Acéual and estimated (+) impulse response for filter L1 Actual and estimated (+) impulse response for filter L2
.8 0.8
0.6¢ 06}
b)
a) 0.4 0.4
0.2¢ 0.2
[s] S 10 15 o 5 10 15
Time Lag Time Lag
Actual (+) and estimated impulse response for filter L3 Convergence of normmalized output rms error
0.8 0.5
o.e 0.4
0.3 L
0.4 9 d)
C) 0.2
i o
o] 5 10 18 [} 100 200 300 400
Time Lag iterations
Convergence of parameter b1 Comnvergence of parameter b2
0.03 0.04
0.025
0.03;
0.02
e) f)
0.015 0.02}
0.01
0.01
0.005
[o] (e]
(o] 100 200 300 400 [o] 100 200 300 400
iterations Iterations
Convergence of inflection point g1 Convergence of inflection point q2
800 260
240
550}
220
g)  soo} h) 200
450 180
160
400 1 140}
350 120 3
o] 100 200 300 400 (o] 100 200 300 400
Iterations iterations

FIGURE 3. Results for the simulation example with one stationary and two nonstationary subnets with modulating functions:
fi(n)=1{1+exp[—by(n—qy)]} and f,(n)=1{1+exp[—b,(n—gy)]}; (a), (b), (c) actual (solid line ) and estimated (+) impulse re-
sponses for filters L1, L2, and L3, respectively; (d) the normalized output rms error vs training iterations; (e), (f) convergence
patterns of the modulator exponents bl and b2, respectively; (g), (h) convergence patterns of the modulator inflection points

gl and g2, respectively; convergence patterns of (i) the fifth weight of the stationary subnet, (j) the fifth weight of the first
nonstationary subnet, (k) the second-degree coefficient of the stationary subnet and (1) the second-degree coefficient of the
first nonstationary subnet. All parameters converge to the exact values within 200 iterations.
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Convergence of the 5th weight for stationary subnet Convergence of the 5th weight for 2nd nonstationary subnet
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FIGURE 3. (Continued.)
were M=400, K=3, R=2 (i.e., 401 input units, three This preliminary analysis of the input/output data pro-

hidden units and second-degree polynomial activation vided us with useful information regarding the way in
functions. These parameters were chosen by successivewhich the system changed over time. The motivation
trials using an output prediction error criterion. The total was to incorporate this information in selecting the ap-
number of the estimated parameters [IKX(M+R propriate form of a global nonstationary modek., the
+1)]=1209, which is about 10%-14% of the number form of the “modulators” discussed previouslyAgain

of datapoints in each segment, thus avoiding overfitting. the parameters of the modulators would be determined
The model predictions were good approximations of the from the training of the network.

real output signals for all segments as illustrated in Fig.  The observation that the responses to an impulse ex-

4, where representative segments are shown. hibited distinct peaks that became more noticeable with
The responses to an impulse for each segment aretime and remained almost unchanged during the last two
presented in Fig. 5. Note that for a Volterfaonlineay segments led us to the selection of sigmoidal modulators,

system, the response to an impulse includes the diago-similar to those discussed in the Simulation Example
nals of the high-order kernels in addition to the first- section.

order (linean kernel. An initial negativity occurs within The fact that the first 16 ms of the responses to an
the first five time lags for all segments, and represents impulse are of primary physiological interest, combined
the onset of an extracellular current sirfgopulation with our desire to facilitate the convergence of the algo-
excitatory postsynaptic potentialEPSP generated as a  rithm by reducing the length, led us to the adoption of a
consequence of the intracellular depolarization of granule surrogate set of input/output data. The surrogate output
cell dendrites by perforant path input. The first positivity file consists of the first 50 sample poinlmost 16.34
which follows represents an extracellular current source ms) of each of the five responses to an impulfee each
(compound action potential, or population spikegas- segment and the input file is composed of the corre-
sively generated as a consequence of action potentialssponding impulses at the beginning of each segment
occurring in granule cell bodies located distalligus, the (Fig. 6). Notice that the abscissa is not real time, because
reversed polarity This positivity increases from the first of the elapsed time between segments. In real time, the
to the third segment. A second positivity occurring first impulse is presented at 0 ms, the second at the 3,500
within the first ten time lags, representing secondary ac- ms, the third at the 6,508 ms, the fourth at the 10,753 ms
tion potential discharges, appears in the second segmentnd the last one at the 13,987 ms. Each response to these
and increases in amplitude from the second to the third input impulses lasts for 16.33 nier 50 sample poinjs
segment. In the last two segments both positivities have Real time is used in the modulators of the TVN, but the
almost equal amplitudes, which are smaller than the re- training takes place only over the aforementioned limited
spective ones in the third segment. There is also a third surrogate data.

peak within the same time periodirst 16 mg, which The TVN model used for training has one stationary
appears in the third segment and may increase in ampli-subnet and two nonstationary subnets with the aforemen-
tude in the next segment. tioned sigmoidal modulators. All subnets have one hid-
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. . Responsa to an impulse for the five segments ' transition of the first modulator begins at the beginning
of the third segment and lasts for almost 5000 sample

1 points (or 1.5 9. The downward transition of the second

modulator begins at the end of the second segment and

lasts for almost 2500 sample poirte 750 m3g entering

the third segment.

Thus, the first nonstationary path is “off” during the
first two segments and “on” during the last three seg-
ments(the transitional area extends over the first half of
the third segment The second nonstationary path is
“on” during the first two segments and “off” during
the last three segment@he transitional area extends
. . . briefly over the end of the second segment and the be-

1st segment

2nd segment
3rd segment

4th segment

0 ® 40 Tinfe"_l_ag(mseg" 100 120 ginning of the third segment The estimated output is
depicted in Fig. 9. The estimated output for the last three
FIGURE 5. The model based response to an impulse for the segments is almost identical to the corresponding real

first (a), second (b), third (c), fourth (d), and fifth (e) seg- . - .
ments. The time-dependent changes due to potentiation are output and constitutes a good prediction for the first two

evident. segments.
This result demonstrates the ability of the proposed
methodology to model an important class of nonstation-
den unit, 50 input units and second-degree polynomial ary systems with “on” and “off” switches that capture
activation functions. The delta-bar-delta rule was used different states that the system may assume over time.
for training all parameters. The trained parameters were Each switch will be a different subnet with a sigmoidal
the 50 weights and the three coefficients of the activation modulator introduced in the structure of the TVN model.
functions (including the constantsfor each subnet, and
the parameterd,, q4, b,, g, of the modulators. DISCUSSION
The resulting estimates of the impulse responses of
the corresponding linear filters of the stationary and non-  This strategy for identifying multiple nonstationarities
stationary paths of the model are shown in Fig. 7. The with different characteristics raises the possibility of a
estimated coefficients of the polynomial activation func- mapping between the parallel paths of the TVN model
tions for each subnet and the parameters of the modula-and specific neurobiological mechanisms underlying the
tors are given in Table 2. changes in the system state. The accuracy with which
The output normalized rms error was 4.819%. The models achieved using the current implementation of the
resulting modulators are depicted in Fig. 8. The upward method represent both dominant and the subtler, detailed

Inputioutput data series

1 T
o8l E
Input

06 ] FIGURE 6. Surrogate input/
output data for the training of

04 7 the TVN model, which consists
of one stationary and two non-

0.2 N stationary subnets with sigmoi-
dal modulators. The output sur-

rogate data is comprised of the
first 50 sample points of each of
the five responses to an im-
pulse. The input surrogate data
is comprised of the respective
impulses.

08L= 1 1 1 1
0

50 100 150 200 250
Time (sample points)
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Estimated impulse response for filter L1 Estimated impulse response for filter L2
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FIGURE 7. Results of the training of the TVN model with one stationary and two nonstationary subnets with modulating
functions: f;(n)=1{1+exp[—bi(n—qy)]} and f,(n)=1{1+exp[—by(n—gy)]}. (a), (b), (c) Estimated impulse responses for filters
L1, L2, and L3, respectively; (d) the normalized output rms error over 1,500 iterations.

alterations in the field potential wave form strengthens (e.g., voltage-dependent calcium chanpalmderlying
this possibility. To use the data analyzed in the presentthe multiple population spikes. Stability is reached rela-
study as an example, the mean rate and intensity oftively rapidly, but the system emerges with decidedly
stimulation used to activate perforant path fibers led to gitferent dynamics, the properties of which are captured
overlapping EPSPs and thus a progressive membrang,y the first nonstationary path. The parameters for the
depolarization of granule cells. The rate of depolarization ., q,1ators b and q, should reflect the dynamics of the
!; counltereddbé/ mplut_frot_m |r|1h|k:j|to:y m';erlneuro?;hk_)tt){t cellular processes underlying the transition from the low

€ prolonged depolarization leads 1o a farure ot Inhibi- excitability state to the high excitability state, which in
tory circuits. Although admittedly a simplification, the . : . .

this case would be determined primarily by voltage-

second nonstationary path must reflect the collective dy- q q q Eff q q |
namics of the temporal summation of granule cell ependent conductances. Effects dependent on voltage-

EPSPs, voltage-dependent conductances activated by ded@t€d channels will evolve relatively rapidifa time
polarization and which in turn amplify the depolarization scale of secondscompared to state transitions mediated

further, and the progressive decline of inhibitory input. Py second messenger biochemical pathways that can
When inhibition ultimately fails, there is a rapid transi- have decay time constants of minutes or longer. For this
tion to a heightened level of depolarization, which acti- reason, the steepness of the sigmoid functions shown in
vates additional, high-threshold excitatory conductances Fig. 8 is reasonable.

TABLE 2. The estimated parameters of the sigmoidal modulating functions and coefficients of
the quadratic polynomial activation function of each hidden unit of the three subnets for the
experimental data.

Stationary First nonstationary Second nonstationary
subnet estimate subnet estimate subnet estimate
Zeroth-order coefficient —2.889714E-01 2.190199E-02 —1.411698E-02
First-order coefficient 1.137932 —8.164694E-01 —7.851913E-01
Second-order coefficient 2.706528E-01 3.782539E-02 5.077590E-02
Exponents (b, ,b,) 1.684263E-03 2.346762E-03

Inflection points (g, ,q,) 23,267.8(6.98 s) 18,790.8(5.64 s)
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preparation having fewer available mechanisms. In such APPENDIX

a simplified preparation, even subtle changes in the

amplitude—time course of a bioelectric event are likely to  Each subnet hasM+ 1) input units, receiving values
be interpretable in terms of underlying molecular and corresponding to the stimulus epochx(n)...x(n
cellular processes. This constitutes the next step in ex-—m)...x(n—M)] at each time instant. Each hidden unit
ploring the efficacy of this approach. Nonetheless, the forms the weighted sum of the input values and trans-
presented results demonstrate the ability of the proposedforms it nonlinearly by means of the respective activa-
methodology to extract useful information about the non- tion function. For example, if we call;(i,m) the
stationary dynamics of the system that is not currently weights for thejth subnet connecting the-lag input
accessible by any other methodological means. value with theith hidden unit, then the weighted sum

M
08 T T T T Vj(i'n):mz:o w;(i,m)x(n—m) (A1)

Estimated output

is formed and transformed nonlinearly by the respective
polynomial activation function as

R
zj(i,n):ZO ¢;(i,nIv;(i,m7, (A2)

Real output

’ . . wherez;(i,n) is the output of thath hidden unit of the
50 100 150 200 250 . ) . . .
Time (sample poinis) jth subnet at timen. In Eq. (A2) c(i,r) are the coeffi-
. _ cients of the polynomial activation functions in thth
FIGURE 9. Experimental output (bottom trace ) and predic- hidd it of thei th sub Finall ing hidd
tion (top trace ) for the model with one stationary and two I . en unit of thejth subnet. Finally, assumirig hidden
nonstationary subnets. units for each subnet
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K
ww=;amm (A3)

L
y(m=2, f(my;(n), (A4)

wherey(n) is the model outputy;(n) is the output of
the jth subnet andf;(n) is the modulating function of
the jth subnet. For the stationary path(n)=1.

Note that the kernels of each subnet in E8). can be

expressed in terms of the weights and the polynomial

coefficients of this subnet. For instance

K
a}°)=2 c;(i,0), (A5)
K
a’(m=3 (. Dwim,  (A6)

K
&”/(my,mp) = 2, ¢(i 2wj(i.my)w;(i,my). (A7)

If we assume that the modulator of thih subnet has
one unknown parametgy;, then the following expres-
sion is used for updating this parameter:

Apj(k)=a,Apj(k—1)

df;
+pp(K)[Y(n) —y(n)]y;(n) ap.(k) (k) (A8)

where y(n) is the measured output of the systekn,
denotes the update index apg, a, are the initial learn-
ing step and momentum for the parameferof the

modulator, respectively. Note that the parameter updates

take place at each time poimt and after a complete

presentation of the entire training set, we continue with
successive iterations until the reduction in error becomes

negligible. Thus, the update indéxis distinct from the
time indexn and the number of iterations.

It is critical to note that the step size (for every
parameter changes withk according to the delta-bar-
delta rule?

k if S(k=1)D(k)>0
Ap(k)=1{ —Bp(k) if S(k=1)D(k)<0, (A9)
0 otherwise

where D(K) is the partial derivative of the error with
respect to the parameter which is updated at tknand

S(k) is an exponentially weighted sum of the current and
past derivatives given by the first-order difference equa-
tion

S(K)=(1-&)D(k—1)+&S(k—1).  (AL0)

Therefore, the step sizes evolve differently for the vari-
ous parameters.

Using the chain rule of differentiation, we derive the
following updating expressions for the polynomial coef-
ficients of the activation functions:

Ac(i,r)=acAci Vi,

+pc(K)[Y(M) —y(m)1f;(mv{”(i,n)
(A11)

and for the in-bound weights of the hidden units:

AW(i,m) = a, AW P(i,m)

+ pw(K)[Y(N) —y(k) If;(n)x(n—m)

x4 > re(i,nvTHiLn) g, (A12)

where p., @, and p,,, a, are the initial learning step
and momentum for the polynomial coefficients and the
in-bound weights of each subnet of the TVN, respec-
tively.
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