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Abstract—Dynamic autoregulation of cerebral hemodynamics This has led to the view of cerebral autoregulation as
in healthy humans is studied using the novel methodology of 5 static phenomenon, whereby the steady-state pressure-

the Laguerre—\Volterra network for systems with fast and slow . . . . ; .
dynamics(Mitsis, G. D., and V. Z. MarmarelisAnn. Biomed. flow relationship is described by a sigmoidal curve with

Eng. 30:272-281, 2002 Since cerebral autoregulation is me- & vyide plateau, sugggsting that cgrebral blood flow re-
diated by various physiological mechanisms with significantly mains constant despite changes in pressure. However,
different time constants, it is used to demonstrate the efficacy this description reveals no information about the dy-

?f the “e"(‘; method. Igesultsl?rr]etpresebnteld "t‘ the lt"tT‘e and namic properties of cerebral autoregulation and the quan-
requency domains and reveal that cerebral autoregulation is a.;,_.: . : ! . .
nonlinear and dynamiéfrequency-dependensystem with con- titative manner in which rapid changes in pressure in

siderable nonstationarities. Quantification of the latter reveals duce rapid changes in flow.

greater variability in specific frequency bands for each subject ~ With the development of transcranial Doppl&@CD)

in the low and middle frequency rangeelow 0.1 Hz. The ultrasonography for the noninvasive measurement of ce-
nonlinear dynamics are prominent also in the low and middle yepral blood flow velocity in the middle cerebral artery

frequency ranges, where the frequency response of the system_ . . . .
exhibits reduced gain. @002 Biomedical Engineering Soci- "ith high temporal resolution, it has been shown that

ety. [DOI: 10.1114/1.1477448 blood flow velocity can vary rapidly in response to varia-
tions of systemic arterial blood pressure over various
) _ time scales?° We will consider data representing the
Eﬁm:égf_m%i:ﬁ:gl E‘ggﬁ;ﬁgﬁg‘:;gg;fg;al \?O?tgﬁ:yﬂgmgz' mean arterial blood pressuf@BP) and mean cerebral
Lagurre-Volterra ne,twork. ’ " blood flow veIocit_y(CBFV), computed as averages over
each heart beat intervdéimarked by theR—R peaks in
the ECQ, and resampled evenly every secofske
Methods.

The traditional concept of cerebral autoregulation re- ~ The availability of such high temporal resolution data
fers to the ability of the cerebrovascular bed to maintain Offers the opportunity to study dynamic cerebral auto-
a relatively constant steady-state cerebral blood flow de- regulation in humans, using recently developed nonlinear
Spite Changes in steady_state cerebral perfusion mOdeling methOdéz In addition to conventional eXperi-
pressuré:1® Intact cerebral autoregulation is very impor- Ments, such as rapid deflation of thigh pressure cffts,
tant, because of the high aerobic metabolic rate of cere- Valsalva maneuverS, or forced breathing maneuvets,
bral tissue(around 15% of the cardiac output is received SPpontaneous fluctuations in beat-to-beat ABP and CBFV
by the brain under resting condition€Even a short in- data possess broadband spectral properties and have been
terruption in cerebral blood flow may result in loss of used for the study of both cerettéf**>*'and rendl®
consciousness® Under normal conditions, it has been autoregulation using line&f***" and nonlinedr®*°
observed that a sudden drop in the pressure level cause§hodeling methods. Impulse response and transfer func-
an initial change in the level of blood flow that gradually tion analysis were utilized to show that cerebral auto-
returns to its previous value within a couple of minutes, regulation is more effective in the low-frequency range

due to multiple homeostatic regulatory mechanisms that (Pelow 0.1 Hz, where most of the ABP spectral power
control cerebrovascular resistarcé. resides (i.e., most spontaneous ABP changes do not

cause large CBFV variationsThese studies have also
Address correspondence to Professor V. Z. Marmarelis, OHE 500, indicated the presence of significant nonlinearities in thIS
USC, Los Angeles, CA90089-1451. Electronic mail: vzm@ low-frequency range by means of coherence function
bmsrs.usc.edu measurements, suggesting that cerebral autoregulation
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mechanisms exhibit dynami@.e., frequency dependent Arterial pressure was measured in the finger by pho-
nonlinearities. This presents the motivation for the toplethysmography(Finapres, Ohmeda The measure-
present study. ments were obtained from the two middle fingers alter-

The goal of this study is to examine the nonlinear natively (every 20 min to prevent discomfort of the
dynamic relationship between beat-to-beat changes insubject and also to prevent prolonged recordings from
ABP and CBFV, which reflects the combined effect of one finger from affecting the accuracy of the measure-
multiple mechanisms of cerebral autoregulation. Since ments. The data segments collected from each finger
the cerebrovascular bed is controlled by metabolic, myo- were processed off-line to construct a continuous time
genic, endothelium-related, and neural mechamism$ series of arterial pressure, as detailed in Ref. 21. The
the dynamics of cerebral autoregulation are active over reliability and accuracy of the finger pressure measure-
widely different frequency band$rom 0.005 to 0.5 Hg ments was corroborated with intermittent pressure mea-
For example, metabolic mechanisms may be more activesurements at the brachial artery by using electrosphyg-
at very low frequencies and myogenic mechanisms may momanometry(Suntech.
be active at high frequencies, while endothelium-related  Cerebral blood flow velocity was measured in the
and autonomic activity may be found in the intermediate middle cerebral artery by using TCD. A 2 MHz Doppler
frequency band& probe (Multiflow, DWL Elektronische Systeme was

For this reason, it is incumbent on the employed mod- placed over the temporal window and was fixed at a
eling methodology to be able to capture reliably both fast constant angle and position with adjustable head gear to
and slow dynamics in a single processing task. To this obtain optimal signals. The ultrasound transducer power
purpose, we employ a recently developed nonlinear mod-was constaniranging from 50 to 60 mW/cf during
eling method, based on a variant of the general Volterra— the recordings. The power level was adjusted to obtain
Wiener approach, that utilizes the Laguerre—\olterra net- an optimal signal, while at the same time being kept as
work (LVN) with two filter banks to model nonlinear low as possible, below the safety limits recommended by
systems with fast and slow dynamics effectivElyNote the American Institute for Ultrasound in Medicine and
that a recently published study on nonlinear modeling of Biology. End-tidal CQ was monitored continuously with
cerebral autoregulatiol?, using the Laguerre expansion a nasal cannula using a mass spectrom@&BA 1100,
of Volterra kernels techniqu¥, seems to have captured Marquette Electronigs
only the fast system dynamiéat frequencies higher than The analog signals of ABP and CBFV were sampled
0.1 H2. simultaneously at 100 Hz and were digitized at 12 bits

In the present paper, an accurate nonlinear model that(Multi-Dop X2, DWL). Real time beat-to-beat mean val-
includes important low-frequency autoregulation dynam- ues of ABP and CBFV were calculated by integrating the
ics is obtained using this novel methodology, and show- waveform of the sampled signals within each cardiac
cases its application to physiological systems with fast cycle (R-R interval). The beat-to-beat values were then
and slow dynamics. linearly interpolated and resampled at 1 kifter anti-

aliasing low-pass filtering to obtain equally spaced
time series of ABP and CBFV data for the subsequent

EXPERIMENTAL METHODS analysis.

Five healthy subject§four male and one female, age: MATHEMATICAL METHODS
30£9 years, weight: 7216 kg, height: 1768 cm)
voluntarily participated in the study. All the subjects The modeling of the dynamic nonlinearities present in
were nonsmokers and free of any known cardiovascular, cerebral autoregulation is performed with a novel variant
pulmonary, or cerebrovascular diseases. The subjects haaf the general Volterra—Wiener approach that utilizes the
been informed about the experimental procedures andLVN with two filter banks, shown in Fig. 1 and dis-
each one signed a written consent form approved by thecussed in detail in the companion papeSome of its
Institutional Review Boards of the University of Texas basic features are highlighted below.
Southwestern Medical Center and the Presbyterian Hos- The free parameters of the LVN are the Laguerre
pital of Dallas. The experiments were conducted post- parameters &, ,a,) of the two filter banks{bj(l)} and
prandial after 2 h in an environmentally controlled labo- {b{®}, the connection weightgw{}, the polynomial
ratory with an ambient temperature of 25°C. The coefficients{cy} and the output offsey,. Their total
subjects were refrained from heavy exercise, caffeinatednumber is equal to L;+L,+2+Q)K+1, where
or alcohol beverages for at least 24 h before the experi- (L,,L,) are the maximum orders of the Laguerre func-
ments. After about 30 min of supine rest, arterial pres- tions employed in the two filter bankg is the order of
sure and blood flow velocity were recorded continuously the polynomial activation functions, arkl is the number
for a period of about 2 h. of hidden units.
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FIGURE 1. The Laguerre—Volterra network with two filter banks. In the figure, n denotes discrete time, x(n) is the input signal,
bj(-‘)(n) and v/(-’)(n) are the jth order discrete-time Laguerre function and the output of the Jth Laguerre filter of the ith filter bank,

respectively, Wgy)jl is the connection weight between the  kth hidden unit and the jth order filter of the Jjth filter bank, u,(n) is the
input of the kth hidden unit, given by uk(n)=E,?=12f='0w}<f)]-u}’)(n), z,(n) is the corresponding hidden unit output, given by
z(my=f, [u (M]1=29_ic, uf(n), and y(n) is the network output, given by  y(n)==f_,z,(n)+y,.

The LVN with two filter banks can yield accurate the derivative off, with respect tou,, r denotes the
nonlinear models from short input-output data records, iteration index andy,,,yc,vy,7; are fixed positive learn-
by using the latter to train the network parameters via the ing constants. Note that the variabl@#')(n), ug(n),
error backpropagation algorithm. This is done through f,’'(n), and e(n) are evaluated at theth iteration in

the following iterative relations: Egs. (1)—(4).
With the use of two Laguerre filter banks character-
W(ki,)j’.(rﬂ):W(ki,)ji(r)Jrlef(n)f&[uk(n)]vj(?)(n)]r, (1) ized by distinct Laguerre parametera;(a,) we can
' ' ' model the fast and slow dynamics of a nonlinear system
(r+1)_ (1) m separately(as in the case of cerebral autoregulationa
Cmk = Cmkt vl e(Mu(n)], 2 single processing task. The LVN representation of a sys-
tem is equivalent to the general Volterra modshown
yo =y + yLe(n)];, 3 below for aQth order system
K Q Q M M
a " M=all+y X X 3 mlenwi)e(n) ym=2 | > .. X Kn(my,..my)x(n—m)
k=1 m=0 j=0 n=0 | ml=0 =0
. av(n)
(7ai '

where the network variables and parameters are definedwherex(n) is the system inputy(n) is the system out-
in Fig. 1, e(n) is the output prediction errof,, denotes put, M is the system memory, and,(m4,...,m,) is the
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nth order Volterra kernel describing theth order(linear
and nonlinegrdynamics of the system. The Volterra ker-
nels in Eqg.(5) can be expressed in terms of the trained
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network parameters as
ko=Yo. (6)
K 2 L
ki(my) =2 ey > X wilb(d(my), (D
k=1 i=1j=0
K 2 2 L L
kz(ml,m2)=2 CZkE > W(kl})
k=1 i1=11i,=1]j;=0 j,=0
('2) b('l)(m )b('z)(mz) (8)
K 2 Ly Li,
kn(mla---ymn)ZE anE 2 . 2 E})
k=1 i1=1 i,=1]j.= 0 in=0
wiPbP(my). b (my), (9
In I In

therefore they can be obtained after the trainiegtima-
tion) of the network parameters using the input-output
data.

FIGURE 2. Typical ABP and CBFV data used for model esti-
mation. Top panels: time series, bottom panels: spectra after
high-pass filtering at 0.005 Hz.

The utility of using two filter banks versus one filter
bank is demonstrated by comparing the out-of-sample
NMSEs (for the testing dateof the two networks for the
same number of free parameters. Specifically, the analy-
sis was repeated for a one filter bank LVN with

The input signal is the ABP data and the output signal =15, K=3, andQ=2, and the results are given in the
is the CBFV data, described in Experimental Methods. 6 Next section.
min data segmentsvhich correspond to 360 data points
are employed in the training procedure, after high-pass
filtering at 0.005 Hz to remove very slow trends in the
data. The averages of the ABP and CBFV data over the 2 h

The structural parameters of the LVN are selected by recordings from each of the five subjects are 82.3
considering the normalized mean-square efdMSE) +10.7 mmHg and 61%9.0 cm/s respectively. Typical
of the output prediction achieved by the model for the 6 min segments of ABP and CBFV data are shown in
training data, defined as the sum of the squares of theFig. 2, along with their corresponding spectra. Most of
errors between the model prediction and the true outputthe signal power lies below 0.10 Hz, and negligible
over the sum of the squares of the true output, using the power lies above 0.2 HZthe average respiratory fre-
“minimum description length”(MDL) criterion’ This guency. The average achieve@n-sample output pre-
ensures that we obtain an accurate representation of thediction NMSEs using first- and second-order LVN mod-
system and avoid overfitting the model to the specific els are 49.1% 13.4% and 27.6% 9.5%, respectively.
data segment. Following this procedure, a LVN with The reduction of the prediction NMSE from the first-
L,=L,=7, K=3, and Q=2 is selected in all cases. order (linean model to the second-ordemonlineay
Note that the total number of unknown parameters in this model is significant(over 20% and satisfies the MDL
model is 55, which is extremely low compared to the criterion used for model order determinatitsee Meth-
conventional cross-correlation techniquevhich would ods, confirming the fact that dynamic cerebral autoregu-
require the estimation of over 5150 values for the first- lation is nonlinear. The NMSE reduction from the
and second-order kernels with the necessary memory ofsecond-order to the third-order LVN model does not
100 lags. The achieved model parsimony is accompaniedmeet the MDL criterion and a second-order model is
by a significant improvement in the prediction NMSE selected.
relative to the conventional cross-correlation technique.  The performance of the LVN modeling approach is
In order to terminate the training procedure and avoid illustrated in Fig. 3, where we show the actual CBFV
overtraining the network, the prediction NMSE is mini- output (top trace along with the obtained LVN model
mized fa a 2 min forward segment of testing daad- prediction(second trace as well as its first- and second-
jacent to the 6 min training data segment order componentgthird and fourth traces, respectively

RESULTS
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FIGURE 3. Typical LVN model prediction.

For this specific data segment, the prediction NMSE is
13%, and the first-orde(linean prediction NMSE is
34% (i.e., the NMSE reduction due to the second-order
kernel is 21%. We must note that the contribution of the
second-order kernginonlinear term to the output pre-
diction NMSE demonstrated considerable variability
among data segmentas small as 8% and as large as
62%). This variability was also reflected in the form of

the second-order kernel estimates among different seg-

ments and/or subjects. This finding may suggest either
nonstationary behavior in the nonlinearity of the system
or the intermodulatorynonlineaj influence of other ex-
ogenous variablege.g., changes in arterial GD

The relative contributions of the linear and nonlinear
terms of the model are also illustrated in Fig. 4 for the
same set of data in the frequency domain, where the
output spectrum and the spectra of the first-order and
second-order residual¢output prediction errops are

shown. The shaded area corresponds to the difference

between the first- and second-order model residuals in
the frequency domain, indicating that the nonlinearities
are found below 0.1 Hz and are prominent below 0.04
Hz. This observation is consistent throughout all the data

segments, and agrees with previous findings based on the o

estimated coherence functiéh.

A typical estimated first-order kernel, which describes
the linear dynamics of the system, is shown in Fig. 5 in
the time domain using logarithmic time scalthe lag
values are incremented by one for this purposehe
decomposition of the kernel into a fast and a slow com-
ponent is performed by the two filter banks of the LVN
and is shown on the left panel of Fig. 5, whereas the
total first-order kernel is shown in the right panel. Note
the large positive value at zero lag and the significant
negative values between 1 and %lag9. Smaller values
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FIGURE 4. Spectra of the output (CBFV), first-, and second-
order model residuals. The shaded area shows the effect of
the nonlinear term in the frequency domain.

extend up to about 150 s. In this case, the fast compo-
nent corresponds to a Laguerre parameter of 0.19, while
the slow component corresponds to a Laguerre parameter
of 0.76. The averaged values for the two Laguerre pa-
rameters over the five subjects are @:2104 and 0.79
+0.05, respectively.

The fast Fourier transforntFFT) magnitudes of the
first-order kernel and its two components are shown in
Fig. 6 in log—log scale. The fast component has a high-
pass (differentiating characteristic with a peak around
0.2 Hz and a “shoulder” around 0.075 Hz, while the
slow component exhibits a peak around 0.025 Hz and a
trough around 0.01 Hz. The total first-order frequency
response(i.e., the FFT magnitude of the first-order ker-

(@
12

08

0.8
0.6

0.6
0.4
0.4
0.2l |
0

o
02 02 | M

-0.4 0.4

0. 0.6

10° 10* 107 10° 10’ 10°

Time [sec] Time {sec]
FIGURE 5. Typical first-order kernel in logarithmic time
scale: (a) Solid line: fast component, dotted line: slow com-
ponents and (b) total kernel. Note that the time lag values
are incremented by 1 to make the logarithmic scale at zero
lag possible.
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Frequency [Hz]

FIGURE 6. FFT magnitude of the first-order kernel (linear
frequency response function ) and its components shown in
Fig. 5. Solid line: total, dotted line: fast component, dashed
line: slow component.

sponse to narrowband variations in ABP occurring at

specific low frequencies, mitigating the aforementioned

high-pass effect at specific low-frequency bands. The

latter were found to vary with time and may be the result

of nonstationary modulation of the cerebrovascular im-

pedance by the autonomic nervous system and other fac-
tors, such as endothelial or metabolic mechanisms. The
averaged first-order kernels over 20 successive 6 min
segments for five different subjects are shown in Fig. 7,

along with standard deviation bounds.

The second-order kernéllescribing the nonlinear dy-
namics of the systemis shown in Fig. 8 for the same
data segment, along with its corresponding frequency-
domain representatiofdefined as the magnitude of the
two-dimensional FFT of the second-order keindlhe
frequency-domain peaks of the lattesymmetric about
the diagonal are related to the corresponding first-order
frequency response peakfr this specific segmehtat
0.025 and 0.2 Hz. Note that the off-diagonal peak at
(0.025, 0.2 Hgz implies nonlinear intermodulatory inter-
actions between the mechanisms residing at the respec-

nel) is dominated by a high-pass characteristic, implying tive frequencies, whereas the diagonal peak (025,

that cerebral autoregulation attenuates the effects of ABP0.025 H2 implies nonlinearity of the single mechanism
changes on CBFV below 0.1 Hz. The presence of low- residing at 0.025 Hz. Secondary peaks are discernible at
frequency peaks implies that CBFV may resonate in re- the off-diagonal bi-frequency poir{0.012, 0.05 Hz and
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FIGURE 7. Average first-order kernels over 20 successive 6 min segments for five different subjects (solid lines ) and corre-

sponding standard deviation  (dashed lines ).
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FIGURE 8. The second-order kernel for the data of Fig. 3.
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FIGURE 9. The first-order frequency response functions tracked ove
overlap ) for two subjects. The nonstationarity is evident and has rand
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at the diagonal poinf0.075, 0.075 Hg both bearing an
intriguing relation to the primary peak at 0.025 Kualf,
double and triple harmonic of 0.025 Hz

Note that the location of the low and midfrequency
(<0.1 Hz) peaks varies over time but stays within cer-
tain bounded neighborhoods from segment to segment
(e.g., the 0.025 Hz peak stays within the 0.01-0.04 Hz
neighborhood The nonstationarity of the system dynam-
ics (i.e., the varying locations of the spectral peaks and
their respective strengthgan be tracked over time by
estimating the system kernels for successive overlapping
data segments. This is illustrated is Fig. 9 for the first-
order kernels, where the first-order frequency responses
evaluated from sliding 6 min windows with 4 min over-
lap are shown for two subjects av@ h of data. The
nonstationarity is evident, especially in low frequencies,
but with no apparent pattern. However, reduced values of
the FFT magnitude are consistently observed over time
between 0.01 and 0.1 Hz.

To quantify the nonstationarity of the second-order
kernel, eigen decomposition is performed and the first
two eigenvalues are found to represent more than 95% of
the kernel power. Therefore, the corresponding two
eigenvectors define the significant nonlinear modes of
the system and are tracked through time in the same
manner as the first-order kerndise., 6 min sliding data
segments with 4 min overlap lllustrative results are
shown in the frequency domain in Fig. 10 for the two
modes(multiplied with the respective eigenvalyes the
two subjects shown in Fig. 9. It is evident that the
second-order(nonlineaj dynamics are more variable
with time (nonstationary than the first-ordelinear dy-
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FIGURE 10. Time-frequency plots of the two significant modes of the second-order kernel for two different subjects, calculated
from overlapping 6 min segments wit h a 4 min overlap (total of around 60 segments ). Left panels: first mode, right panels:

second mode.

namics, especially in the low and middle frequencies
(<0.1 Hz). We also note that the second nonlinear mode
is more nonstationary than the first mode and exhibits
more peaks in the midfrequency ran¢@01-0.1 Hzx
Unlike the first-order kernel, the second-order kernel
modes do not exhibit significant power in high frequen-
cies (>0.1 Hz).

Although the study of nonstationarity deserves more
future attention, a first attempt for quantification is the
computation of a “variability index” over time for the
kernel power at each discrete frequency bin If p;(f;)
denotes the power at th¢h data segment &t , defined
by the FFT magnitude of the kernel, then the variability
index can be defined as

N 1/2
I(f7)= 2 [py(fi)— pf)]] /H(fo,

(10

1.6 T — 1.2

141 A

167 10" 107 10"
Frequency [Hz] Frequency [Hz}

FIGURE 11. Variability indices for the two subjects of Figs. 9
and 10. Solid line: first-order kernel, dashed line: first mode
of second-order kernel, dotted line: second mode of second-
order kernel.
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lon residuals tor models with one ( -1) an ° with one (LVN-1) and two (LVN-2) filter banks. The shape of

(LVN-2) filter banks for a testing data segment. The improved
performance of the LVN-2 model is demonstrated by the pre-
ponderance of the dark shaded areas over the light shaded

the LVN-2 kernel is more consistent from segment to seg-
ment and yields lower prediction errors for the testing data

areas. segments.
where N is the number of segments aff;) is the in Fig. 13 obtained from the two methods. The wave
average ofp;(f;) over j for each frequencyf;. The form of the kernel is more consistent from segment to

computed variability indices for the first-order kernels Ségment for the LVN-2.
and the second-order kernel modes are shown in Fig. 11
for the two subjects of Figs. 9 and 10. CONCLUSIONS

Increased variability is observed in the low frequen-
cies attributable to metabolic factors and in the middle  The presented results demonstrated the efficacy of the
frequencies, attributable to autonomic activity. Minimum proposed approach in modeling nonlinear physiological
variability is observed at frequencies above 0.12 Hz. systems with fast and slow dynamics, such as the auto-
The variability is evidently greater for the nonlinear regulation of cerebral hemodynamics. The slow dynam-
dynamics. ics were reliably estimated in the first-orddinearn and

We conclude this section with an illustration of the second-ordefnonlineaj kernels, indicating that cerebral
relative performance of the proposed method with two autoregulation has a longer memofye., duration of
filter banks(LVN-2) versus the single filter-bank method causal effects from ABP changes to CBFV chandbkan
(LVN-1). If we keep the number of free parameters the previously thought. Specifically, CBFV is affected by

same for both methodd. =15 for the LVN-1), the cor- changes in ABP occurring up to a couple of minutes into
responding prediction errors for the testing data segmentsthe past—contrary to the prevailing view that the effects
increase considerablgbout 20% on the averagfor the last only for a few seconds. The reliable estimation of

LVN-1, although the prediction errors for the training the slow dynamics was not possible with previously used
data segments are comparable. This can be seen in théechniques and has become possible with the novel meth-
spectra of the output residuals for a testing data segmentodology introduced in the companion papeBince con-
(Fig. 12. The dark-shaded area indicates the frequency siderable ABP and CBFV signal power resides in the
ranges where the performance of the LVN-2 exceeds thatlow-frequency range, the role of slow dynami6se.,

of the LVN-1, whereas the light-shaded area indicates the low-frequency characteristicds important for cerebral
ranges where the reverse happens. It is clear that theautoregulation. Thus, the advent of this new method of-
overall performance of the LVN-2 is better, which is also fers a unique tool enabling proper analysis of cerebral
reflected in the achieved NMS&2.32% vs 56.66% in  autoregulation over the entire frequency range of interest.
the LVN-1 casg¢ This improvement is more evident be- The nonlinear characteristics of autoregulation were
low 0.02 Hz and above 0.05 Hz, demonstrating that the confirmed by comparing the prediction NMSEs achieved
use of two filter bankdi.e., two distinct Laguerre pa- by linear and nonlinear models. The prediction NMSE
rametery captures better the two distinct time scales of was reduced by almost 20% when second-ofdenlin-

the system dynamics. The first-order kernels are showneap terms were included in the model, showing clearly
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that the second-order nonlinear dynamics cannot be neadditional inputs* in order to quantify their combined
glected. Analysis of the spectral content of the first and dynamic effect(along with ABP changgson CBFV
second-order model residualsutput prediction errojs fluctuations.
demonstrated that the nonlinearities reside primarily in  In conclusion, the improved accuracy achieved by
the low and middle frequency rangbelow 0.1 Hz, and  nonlinear modeling methods can lead to a better quanti-
mostly below 0.04 Hg, a finding that agrees with previ- tative understanding of dynamic cerebral autoregulation,
ous studies based on coherence function measureftents. in normal or pathophysiological casés.g., hyperten-
The first-order (linean dynamics of autoregulation sion), under the influence of multiple systemic variables
were shown to have a fast differentiating component and (neural and humoralthat have been long thought to
a slow integrating/resonating component. The former re- have an effect but have not been amenable to quantifi-
sponds to fast changes in AB@bove 0.1 Hy and is cation, due to intrinsic nonlinearities and nonstationari-
responsible for the high-pass characteristic of autoregu-ties. This may be potentially useful for clinical diagnosis
lation observed previously;?* whereby changes in of patients with cerebrovascular diseases.
CBFV induced by ABP changes below 0.1 Hz are
strongly attenuated. The observed negative undershoot of
the first-order kerne(between 1 and 5)scan be related

to the cerebrovascular compliance and may have impor-  This work was supported by Grant No. RR-01861
tant clinical implications in the diagnosis and treatment gwarded to the Biomedical Simulations Resource at the
of hypertension. On the other hand, the slow component ynjversity of Southern California from the National Cen-
exhibits peaks in the lowbelow 0.01 Hz and mid ter for Research Resources of the National Institutes of
(0.01-0.1 Hz frequency ranges. The precise location of Health and Grant No. 98BG058 awarded to the Institute
the peaks in the midfrequency range varies from segmentfor Exercise and Environmental Medicine, University of
to segment, exhibiting nonstationary behavior illustrated Texas Southwestern Medical Center at Dallas and Pres-

in Fig. 9 for two subjects ove2 h of data. Nonstationary  pyterian Hospital of Dallas from American Heart Asso-
behavior is also evident in the second-order nonlinear cjation Texas Affiliate.

dynamics(described by the two significant modes of the

second-order kerneas illustrated in Fig. 10 for the same

data. The nonlinear dynamics reside below 0.1 Hz and

mostly below 0.04 Hz, as demonstrated by the spectra of REFERENCES
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