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Abstract—Dynamic autoregulation of cerebral hemodynam
in healthy humans is studied using the novel methodology
the Laguerre–Volterra network for systems with fast and sl
dynamics~Mitsis, G. D., and V. Z. Marmarelis,Ann. Biomed.
Eng. 30:272–281, 2002!. Since cerebral autoregulation is m
diated by various physiological mechanisms with significan
different time constants, it is used to demonstrate the effic
of the new method. Results are presented in the time
frequency domains and reveal that cerebral autoregulation
nonlinear and dynamic~frequency-dependent! system with con-
siderable nonstationarities. Quantification of the latter reve
greater variability in specific frequency bands for each sub
in the low and middle frequency range~below 0.1 Hz!. The
nonlinear dynamics are prominent also in the low and mid
frequency ranges, where the frequency response of the sy
exhibits reduced gain. ©2002 Biomedical Engineering Soc
ety. @DOI: 10.1114/1.1477448#

Keywords—Cerebral autoregulation, Cerebral hemodynam
Nonlinear modeling, Nonstationary systems, Volterra kern
Lagurre–Volterra network.

INTRODUCTION

The traditional concept of cerebral autoregulation
fers to the ability of the cerebrovascular bed to maint
a relatively constant steady-state cerebral blood flow
spite changes in steady-state cerebral perfus
pressure.7,16 Intact cerebral autoregulation is very impo
tant, because of the high aerobic metabolic rate of ce
bral tissue~around 15% of the cardiac output is receiv
by the brain under resting conditions!. Even a short in-
terruption in cerebral blood flow may result in loss
consciousness.7,16 Under normal conditions, it has bee
observed that a sudden drop in the pressure level ca
an initial change in the level of blood flow that gradua
returns to its previous value within a couple of minute
due to multiple homeostatic regulatory mechanisms t
control cerebrovascular resistance.7,16
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This has led to the view of cerebral autoregulation
a static phenomenon, whereby the steady-state press
flow relationship is described by a sigmoidal curve w
a wide plateau, suggesting that cerebral blood flow
mains constant despite changes in pressure. Howe
this description reveals no information about the d
namic properties of cerebral autoregulation and the qu
titative manner in which rapid changes in pressure
duce rapid changes in flow.

With the development of transcranial Doppler~TCD!
ultrasonography for the noninvasive measurement of
rebral blood flow velocity in the middle cerebral arte
with high temporal resolution, it has been shown th
blood flow velocity can vary rapidly in response to vari
tions of systemic arterial blood pressure over vario
time scales.11,20 We will consider data representing th
mean arterial blood pressure~ABP! and mean cerebra
blood flow velocity~CBFV!, computed as averages ov
each heart beat interval~marked by theR–R peaks in
the ECG!, and resampled evenly every second~see
Methods!.

The availability of such high temporal resolution da
offers the opportunity to study dynamic cerebral au
regulation in humans, using recently developed nonlin
modeling methods.12 In addition to conventional experi
ments, such as rapid deflation of thigh pressure cuffs1,19

Valsalva maneuvers,18 or forced breathing maneuvers4

spontaneous fluctuations in beat-to-beat ABP and CB
data possess broadband spectral properties and have
used for the study of both cerebral6,8,13,15,21and renal2,3

autoregulation using linear6,8,13,21 and nonlinear2,3,15

modeling methods. Impulse response and transfer fu
tion analysis were utilized to show that cerebral au
regulation is more effective in the low-frequency ran
~below 0.1 Hz!, where most of the ABP spectral powe
resides ~i.e., most spontaneous ABP changes do
cause large CBFV variations!. These studies have als
indicated the presence of significant nonlinearities in t
low-frequency range by means of coherence funct
measurements,21 suggesting that cerebral autoregulati



t
he

ar
in

of
ce

yo-

ver

tive
ay

ted
te

d-
ast
his
od-
ra–
et-
r

of
n
d
n

tha
m-
w-

ast

:

ts
lar
ha

and
the
s
os
st-
o-
he
ted
eri-
es-
sly

ho-

er-

om
re-
ger
me
he
re-
ea-
yg-

he
r

a
r to
er

ain
as
by
d

ed
its
l-
he
iac
n

ent

in
nt

the
-

rre

c-

556 MITSIS et al.
mechanisms exhibit dynamic~i.e., frequency dependen!
nonlinearities. This presents the motivation for t
present study.

The goal of this study is to examine the nonline
dynamic relationship between beat-to-beat changes
ABP and CBFV, which reflects the combined effect
multiple mechanisms of cerebral autoregulation. Sin
the cerebrovascular bed is controlled by metabolic, m
genic, endothelium-related, and neural mechanisms5,15,16

the dynamics of cerebral autoregulation are active o
widely different frequency bands~from 0.005 to 0.5 Hz!.
For example, metabolic mechanisms may be more ac
at very low frequencies and myogenic mechanisms m
be active at high frequencies, while endothelium-rela
and autonomic activity may be found in the intermedia
frequency bands.21

For this reason, it is incumbent on the employed mo
eling methodology to be able to capture reliably both f
and slow dynamics in a single processing task. To t
purpose, we employ a recently developed nonlinear m
eling method, based on a variant of the general Volter
Wiener approach, that utilizes the Laguerre–Volterra n
work ~LVN ! with two filter banks to model nonlinea
systems with fast and slow dynamics effectively.12 Note
that a recently published study on nonlinear modeling
cerebral autoregulation,15 using the Laguerre expansio
of Volterra kernels technique,10 seems to have capture
only the fast system dynamics~at frequencies higher tha
0.1 Hz!.

In the present paper, an accurate nonlinear model
includes important low-frequency autoregulation dyna
ics is obtained using this novel methodology, and sho
cases its application to physiological systems with f
and slow dynamics.

EXPERIMENTAL METHODS

Five healthy subjects~four male and one female, age
3069 years, weight: 77616 kg, height: 17668 cm!
voluntarily participated in the study. All the subjec
were nonsmokers and free of any known cardiovascu
pulmonary, or cerebrovascular diseases. The subjects
been informed about the experimental procedures
each one signed a written consent form approved by
Institutional Review Boards of the University of Texa
Southwestern Medical Center and the Presbyterian H
pital of Dallas. The experiments were conducted po
prandial after 2 h in an environmentally controlled lab
ratory with an ambient temperature of 25 °C. T
subjects were refrained from heavy exercise, caffeina
or alcohol beverages for at least 24 h before the exp
ments. After about 30 min of supine rest, arterial pr
sure and blood flow velocity were recorded continuou
for a period of about 2 h.
t

,
d

-

Arterial pressure was measured in the finger by p
toplethysmography~Finapres, Ohmeda!. The measure-
ments were obtained from the two middle fingers alt
natively ~every 20 min! to prevent discomfort of the
subject and also to prevent prolonged recordings fr
one finger from affecting the accuracy of the measu
ments. The data segments collected from each fin
were processed off-line to construct a continuous ti
series of arterial pressure, as detailed in Ref. 21. T
reliability and accuracy of the finger pressure measu
ments was corroborated with intermittent pressure m
surements at the brachial artery by using electrosph
momanometry~Suntech!.

Cerebral blood flow velocity was measured in t
middle cerebral artery by using TCD. A 2 MHz Dopple
probe ~Multiflow, DWL Elektronische Systeme! was
placed over the temporal window and was fixed at
constant angle and position with adjustable head gea
obtain optimal signals. The ultrasound transducer pow
was constant~ranging from 50 to 60 mW/cm2! during
the recordings. The power level was adjusted to obt
an optimal signal, while at the same time being kept
low as possible, below the safety limits recommended
the American Institute for Ultrasound in Medicine an
Biology. End-tidal CO2 was monitored continuously with
a nasal cannula using a mass spectrometer~MGA 1100,
Marquette Electronics!.

The analog signals of ABP and CBFV were sampl
simultaneously at 100 Hz and were digitized at 12 b
~Multi-Dop X2, DWL!. Real time beat-to-beat mean va
ues of ABP and CBFV were calculated by integrating t
waveform of the sampled signals within each card
cycle ~R–R interval!. The beat-to-beat values were the
linearly interpolated and resampled at 1 Hz~after anti-
aliasing low-pass filtering! to obtain equally spaced
time series of ABP and CBFV data for the subsequ
analysis.

MATHEMATICAL METHODS

The modeling of the dynamic nonlinearities present
cerebral autoregulation is performed with a novel varia
of the general Volterra–Wiener approach that utilizes
LVN with two filter banks, shown in Fig. 1 and dis
cussed in detail in the companion paper.12 Some of its
basic features are highlighted below.

The free parameters of the LVN are the Lague
parameters (a1 ,a2) of the two filter banks$bj

(1)% and
$bj

(2)%, the connection weights$wk, j
( i ) %, the polynomial

coefficients$cm,k% and the output offsety0 . Their total
number is equal to (L11L2121Q)K11, where
(L1 ,L2) are the maximum orders of the Laguerre fun
tions employed in the two filter banks,Q is the order of
the polynomial activation functions, andK is the number
of hidden units.
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FIGURE 1. The Laguerre–Volterra network with two filter banks. In the figure, n denotes discrete time, x „n … is the input signal,
b j

„ i …
„n … and n j

„ i …
„n … are the j th order discrete-time Laguerre function and the output of the j th Laguerre filter of the i th filter bank,

respectively, w k,j i
„ i … is the connection weight between the kth hidden unit and the j th order filter of the i th filter bank, u k„n … is the

input of the k th hidden unit, given by u k„n …Ä( iÄ1
2 ( jÄ0

L i w k ,j
„ i …n j

„ i …
„n …, zk„n … is the corresponding hidden unit output, given by

zk„n …Äf k†u k„n …‡Ä(mÄ1
Q c m,ku k

m
„n …, and y „n … is the network output, given by y „n …Ä(kÄ1

K zk„n …¿y 0 .
e
ds,
the
gh

ne

r-

em

ys-
The LVN with two filter banks can yield accurat
nonlinear models from short input-output data recor
by using the latter to train the network parameters via
error backpropagation algorithm. This is done throu
the following iterative relations:

wk, j i

( i ),(r 11)5wk, j i

( i ),(r )1gwbe~n! f k8@uk~n!#n j i

( i )~n!c r , ~1!

cm,k
(r 11)5cm,k

(r ) 1gCbe~n!uk
m~n!c r , ~2!

y0
(r 11)5y0

(r )1gy@e~n!# r , ~3!

ai
(r 11)5ai

(r )1g i (
k51

K

(
m50

Q

(
j 50

Li

mFcm,kwk, j
( i ) e~n!

3uk
m21~n!

]n j
( i )~n!

]ai
G

r

, ~4!

where the network variables and parameters are defi
in Fig. 1, e(n) is the output prediction error,f k8 denotes
d

the derivative of f k with respect touk , r denotes the
iteration index andgw ,gc ,gy ,g i are fixed positive learn-
ing constants. Note that the variablesn j

( i )(n), uk(n),
f k88(n), and e(n) are evaluated at ther th iteration in
Eqs. ~1!–~4!.

With the use of two Laguerre filter banks characte
ized by distinct Laguerre parameters (a1 ,a2) we can
model the fast and slow dynamics of a nonlinear syst
separately~as in the case of cerebral autoregulation! in a
single processing task. The LVN representation of a s
tem is equivalent to the general Volterra model~shown
below for aQth order system!:

y~n!5 (
n50

Q F (
m150

M

... (
mn50

M

kn~m1 ,..,mn!x~n2m1!

...x~n2mn!G , ~5!

wherex(n) is the system input,y(n) is the system out-
put, M is the system memory, andkn(m1 ,...,mn) is the



r-
ed

ut

nal
. 6
s
ass
e

by

he
the

tpu
the

f th
ific
ith
.
his
he

st-
y o
ied
E
ue.
oid
i-

r
ple

aly-

e

2 h
.3

l
in
of
le
-

d-

t-

u-
e
ot
is

is
V
l
-

558 MITSIS et al.
nth order Volterra kernel describing thenth order~linear
and nonlinear! dynamics of the system. The Volterra ke
nels in Eq.~5! can be expressed in terms of the train
network parameters as

k05y0 , ~6!

k1~m1!5 (
k51

K

c1,k(
i 51

2

(
j 50

Li

wk, j
( i ) bj

( i )~m1!, ~7!

k2~m1 ,m2!5 (
k51

K

c2,k (
i 151

2

(
i 251

2

(
j 150

Li 1

(
j 250

Li 2

wk, j 1

( i 1)

3wk, j 2

( i 2) bj 1

( i 1)
~m1!bj 2

( i 2)
~m2!, ~8!

kn~m1 ,...,mn!5 (
k51

K

cn,k (
i 151

2

... (
i n51

2

(
j 150

Li 1

... (
j n50

Li n

wk, j 1

( i 1)

...wk, j n

( i n) bj 1

( i 1)
~m1!...bj n

( i n)
~mn!, ~9!

therefore they can be obtained after the training~estima-
tion! of the network parameters using the input-outp
data.

The input signal is the ABP data and the output sig
is the CBFV data, described in Experimental Methods
min data segments~which correspond to 360 data point!
are employed in the training procedure, after high-p
filtering at 0.005 Hz to remove very slow trends in th
data.

The structural parameters of the LVN are selected
considering the normalized mean-square error~NMSE!
of the output prediction achieved by the model for t
training data, defined as the sum of the squares of
errors between the model prediction and the true ou
over the sum of the squares of the true output, using
‘‘minimum description length’’~MDL ! criterion.17 This
ensures that we obtain an accurate representation o
system and avoid overfitting the model to the spec
data segment. Following this procedure, a LVN w
L15L257, K53, and Q52 is selected in all cases
Note that the total number of unknown parameters in t
model is 55, which is extremely low compared to t
conventional cross-correlation technique,9 which would
require the estimation of over 5150 values for the fir
and second-order kernels with the necessary memor
100 lags. The achieved model parsimony is accompan
by a significant improvement in the prediction NMS
relative to the conventional cross-correlation techniq
In order to terminate the training procedure and av
overtraining the network, the prediction NMSE is min
mized for a 2 min forward segment of testing data~ad-
jacent to the 6 min training data segment!.
t

e

f

The utility of using two filter banks versus one filte
bank is demonstrated by comparing the out-of-sam
NMSEs ~for the testing data! of the two networks for the
same number of free parameters. Specifically, the an
sis was repeated for a one filter bank LVN withL
515, K53, andQ52, and the results are given in th
next section.

RESULTS

The averages of the ABP and CBFV data over the
recordings from each of the five subjects are 82
610.7 mm Hg and 61.769.0 cm/s respectively. Typica
6 min segments of ABP and CBFV data are shown
Fig. 2, along with their corresponding spectra. Most
the signal power lies below 0.10 Hz, and negligib
power lies above 0.2 Hz~the average respiratory fre
quency!. The average achieved~in-sample! output pre-
diction NMSEs using first- and second-order LVN mo
els are 49.1%613.4% and 27.6%69.5%, respectively.
The reduction of the prediction NMSE from the firs
order ~linear! model to the second-order~nonlinear!
model is significant~over 20%! and satisfies the MDL
criterion used for model order determination~see Meth-
ods!, confirming the fact that dynamic cerebral autoreg
lation is nonlinear. The NMSE reduction from th
second-order to the third-order LVN model does n
meet the MDL criterion and a second-order model
selected.

The performance of the LVN modeling approach
illustrated in Fig. 3, where we show the actual CBF
output ~top trace! along with the obtained LVN mode
prediction~second trace!, as well as its first- and second
order components~third and fourth traces, respectively!.

FIGURE 2. Typical ABP and CBFV data used for model esti-
mation. Top panels: time series, bottom panels: spectra after
high-pass filtering at 0.005 Hz.
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559Nonlinear Dynamic Modeling of Cerebral Autoregulation
For this specific data segment, the prediction NMSE
13%, and the first-order~linear! prediction NMSE is
34% ~i.e., the NMSE reduction due to the second-ord
kernel is 21%!. We must note that the contribution of th
second-order kernel~nonlinear term! to the output pre-
diction NMSE demonstrated considerable variabil
among data segments~as small as 8% and as large
62%!. This variability was also reflected in the form o
the second-order kernel estimates among different s
ments and/or subjects. This finding may suggest eit
nonstationary behavior in the nonlinearity of the syst
or the intermodulatory~nonlinear! influence of other ex-
ogenous variables~e.g., changes in arterial CO2!.

The relative contributions of the linear and nonline
terms of the model are also illustrated in Fig. 4 for t
same set of data in the frequency domain, where
output spectrum and the spectra of the first-order
second-order residuals~output prediction errors! are
shown. The shaded area corresponds to the differe
between the first- and second-order model residuals
the frequency domain, indicating that the nonlinearit
are found below 0.1 Hz and are prominent below 0
Hz. This observation is consistent throughout all the d
segments, and agrees with previous findings based on
estimated coherence function.21

A typical estimated first-order kernel, which describ
the linear dynamics of the system, is shown in Fig. 5
the time domain using logarithmic time scale~the lag
values are incremented by one for this purpose!. The
decomposition of the kernel into a fast and a slow co
ponent is performed by the two filter banks of the LV
and is shown on the left panel of Fig. 5, whereas
total first-order kernel is shown in the right panel. No
the large positive value at zero lag and the signific
negative values between 1 and 5 s~lags!. Smaller values

FIGURE 3. Typical LVN model prediction.
-

e

e

extend up to about 150 s. In this case, the fast com
nent corresponds to a Laguerre parameter of 0.19, w
the slow component corresponds to a Laguerre param
of 0.76. The averaged values for the two Laguerre
rameters over the five subjects are 0.2460.04 and 0.79
60.05, respectively.

The fast Fourier transform~FFT! magnitudes of the
first-order kernel and its two components are shown
Fig. 6 in log–log scale. The fast component has a hi
pass ~differentiating! characteristic with a peak aroun
0.2 Hz and a ‘‘shoulder’’ around 0.075 Hz, while th
slow component exhibits a peak around 0.025 Hz an
trough around 0.01 Hz. The total first-order frequen
response~i.e., the FFT magnitude of the first-order ke

FIGURE 4. Spectra of the output „CBFV…, first-, and second-
order model residuals. The shaded area shows the effect of
the nonlinear term in the frequency domain.

FIGURE 5. Typical first-order kernel in logarithmic time
scale: „a… Solid line: fast component, dotted line: slow com-
ponents and „b… total kernel. Note that the time lag values
are incremented by 1 to make the logarithmic scale at zero
lag possible.
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560 MITSIS et al.
nel! is dominated by a high-pass characteristic, implyi
that cerebral autoregulation attenuates the effects of A
changes on CBFV below 0.1 Hz. The presence of lo
frequency peaks implies that CBFV may resonate in

FIGURE 6. FFT magnitude of the first-order kernel „linear
frequency response function … and its components shown in
Fig. 5. Solid line: total, dotted line: fast component, dashed
line: slow component.
sponse to narrowband variations in ABP occurring
specific low frequencies, mitigating the aforemention
high-pass effect at specific low-frequency bands. T
latter were found to vary with time and may be the res
of nonstationary modulation of the cerebrovascular i
pedance by the autonomic nervous system and other
tors, such as endothelial or metabolic mechanisms.
averaged first-order kernels over 20 successive 6
segments for five different subjects are shown in Fig.
along with standard deviation bounds.

The second-order kernel~describing the nonlinear dy
namics of the system! is shown in Fig. 8 for the same
data segment, along with its corresponding frequen
domain representation~defined as the magnitude of th
two-dimensional FFT of the second-order kernel!. The
frequency-domain peaks of the latter~symmetric about
the diagonal! are related to the corresponding first-ord
frequency response peaks~for this specific segment! at
0.025 and 0.2 Hz. Note that the off-diagonal peak
~0.025, 0.2 Hz! implies nonlinear intermodulatory inter
actions between the mechanisms residing at the res
tive frequencies, whereas the diagonal peak at~0.025,
0.025 Hz! implies nonlinearity of the single mechanis
residing at 0.025 Hz. Secondary peaks are discernibl
the off-diagonal bi-frequency point~0.012, 0.05 Hz! and
FIGURE 7. Average first-order kernels over 20 successive 6 min segments for five different subjects „solid lines … and corre-
sponding standard deviation „dashed lines ….
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561Nonlinear Dynamic Modeling of Cerebral Autoregulation
FIGURE 8. The second-order kernel for the data of Fig. 3.
Upper panel: time domain, lower panel: frequency domain.
e

at the diagonal point~0.075, 0.075 Hz!, both bearing an
intriguing relation to the primary peak at 0.025 Hz~half,
double and triple harmonic of 0.025 Hz!.

Note that the location of the low and midfrequen
(,0.1 Hz) peaks varies over time but stays within c
tain bounded neighborhoods from segment to segm
~e.g., the 0.025 Hz peak stays within the 0.01–0.04
neighborhood!. The nonstationarity of the system dynam
ics ~i.e., the varying locations of the spectral peaks a
their respective strengths! can be tracked over time b
estimating the system kernels for successive overlapp
data segments. This is illustrated is Fig. 9 for the fir
order kernels, where the first-order frequency respon
evaluated from sliding 6 min windows with 4 min ove
lap are shown for two subjects over 2 h of data. The
nonstationarity is evident, especially in low frequencie
but with no apparent pattern. However, reduced values
the FFT magnitude are consistently observed over t
between 0.01 and 0.1 Hz.

To quantify the nonstationarity of the second-ord
kernel, eigen decomposition is performed and the fi
two eigenvalues are found to represent more than 95%
the kernel power. Therefore, the corresponding t
eigenvectors define the significant nonlinear modes
the system and are tracked through time in the sa
manner as the first-order kernels~i.e., 6 min sliding data
segments with 4 min overlap!. Illustrative results are
shown in the frequency domain in Fig. 10 for the tw
modes~multiplied with the respective eigenvalues! of the
two subjects shown in Fig. 9. It is evident that th
second-order~nonlinear! dynamics are more variable
with time ~nonstationary! than the first-order~linear! dy-
FIGURE 9. The first-order frequency response functions tracked ove r 2 h of data „6 min sliding data segments with 4 min
overlap … for two subjects. The nonstationarity is evident and has random appearance.
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FIGURE 10. Time-frequency plots of the two significant modes of the second-order kernel for two different subjects, calculated
from overlapping 6 min segments wit h a 4 min overlap „total of around 60 segments …. Left panels: first mode, right panels:
second mode.
ies
ode
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ity
namics, especially in the low and middle frequenc
(,0.1 Hz). We also note that the second nonlinear m
is more nonstationary than the first mode and exhib
more peaks in the midfrequency range~0.01–0.1 Hz!.
Unlike the first-order kernel, the second-order kern
modes do not exhibit significant power in high freque
cies (.0.1 Hz).

Although the study of nonstationarity deserves mo
future attention, a first attempt for quantification is t
computation of a ‘‘variability index’’ over time for the
kernel power at each discrete frequency binf i . If pj ( f i)
denotes the power at thej th data segment atf i , defined
by the FFT magnitude of the kernel, then the variabil
index can be defined as

I ~ f i !5H 1

N21 (
j 51

N

@pj~ f i !2 p̄~ f i !#
2J 1/2Y p̄~ f i !,

~10!
FIGURE 11. Variability indices for the two subjects of Figs. 9
and 10. Solid line: first-order kernel, dashed line: first mode
of second-order kernel, dotted line: second mode of second-
order kernel.
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563Nonlinear Dynamic Modeling of Cerebral Autoregulation
where N is the number of segments andp̄( f i) is the
average ofpj ( f i) over j for each frequencyf i . The
computed variability indices for the first-order kerne
and the second-order kernel modes are shown in Fig
for the two subjects of Figs. 9 and 10.

Increased variability is observed in the low freque
cies attributable to metabolic factors and in the mid
frequencies, attributable to autonomic activity. Minimu
variability is observed at frequencies above 0.12 H
The variability is evidently greater for the nonline
dynamics.

We conclude this section with an illustration of th
relative performance of the proposed method with t
filter banks~LVN-2! versus the single filter-bank metho
~LVN-1!. If we keep the number of free parameters t
same for both methods~L515 for the LVN-1!, the cor-
responding prediction errors for the testing data segm
increase considerably~about 20% on the average! for the
LVN-1, although the prediction errors for the trainin
data segments are comparable. This can be seen in
spectra of the output residuals for a testing data segm
~Fig. 12!. The dark-shaded area indicates the freque
ranges where the performance of the LVN-2 exceeds
of the LVN-1, whereas the light-shaded area indicates
ranges where the reverse happens. It is clear that
overall performance of the LVN-2 is better, which is al
reflected in the achieved NMSE~42.32% vs 56.66% in
the LVN-1 case!. This improvement is more evident be
low 0.02 Hz and above 0.05 Hz, demonstrating that
use of two filter banks~i.e., two distinct Laguerre pa
rameters! captures better the two distinct time scales
the system dynamics. The first-order kernels are sho

FIGURE 12. Output spectrum and spectra of output predic-
tion residuals for LVN models with one „LVN-1… and two
„LVN-2… filter banks for a testing data segment. The improved
performance of the LVN-2 model is demonstrated by the pre-
ponderance of the dark shaded areas over the light shaded
areas.
s

e
t

t

e

in Fig. 13 obtained from the two methods. The wa
form of the kernel is more consistent from segment
segment for the LVN-2.

CONCLUSIONS

The presented results demonstrated the efficacy of
proposed approach in modeling nonlinear physiologi
systems with fast and slow dynamics, such as the a
regulation of cerebral hemodynamics. The slow dyna
ics were reliably estimated in the first-order~linear! and
second-order~nonlinear! kernels, indicating that cerebra
autoregulation has a longer memory~i.e., duration of
causal effects from ABP changes to CBFV changes! than
previously thought. Specifically, CBFV is affected b
changes in ABP occurring up to a couple of minutes in
the past—contrary to the prevailing view that the effe
last only for a few seconds. The reliable estimation
the slow dynamics was not possible with previously us
techniques and has become possible with the novel m
odology introduced in the companion paper.12 Since con-
siderable ABP and CBFV signal power resides in t
low-frequency range, the role of slow dynamics~i.e.,
low-frequency characteristics! is important for cerebral
autoregulation. Thus, the advent of this new method
fers a unique tool enabling proper analysis of cereb
autoregulation over the entire frequency range of inter

The nonlinear characteristics of autoregulation we
confirmed by comparing the prediction NMSEs achiev
by linear and nonlinear models. The prediction NMS
was reduced by almost 20% when second-order~nonlin-
ear! terms were included in the model, showing clea

FIGURE 13. First-order kernels obtained from LVN models
with one „LVN-1… and two „LVN-2… filter banks. The shape of
the LVN-2 kernel is more consistent from segment to seg-
ment and yields lower prediction errors for the testing data
segments.
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that the second-order nonlinear dynamics cannot be
glected. Analysis of the spectral content of the first a
second-order model residuals~output prediction errors!
demonstrated that the nonlinearities reside primarily
the low and middle frequency range~below 0.1 Hz, and
mostly below 0.04 Hz!, a finding that agrees with previ
ous studies based on coherence function measureme21

The first-order ~linear! dynamics of autoregulation
were shown to have a fast differentiating component a
a slow integrating/resonating component. The former
sponds to fast changes in ABP~above 0.1 Hz! and is
responsible for the high-pass characteristic of autore
lation observed previously,15,21 whereby changes in
CBFV induced by ABP changes below 0.1 Hz a
strongly attenuated. The observed negative undersho
the first-order kernel~between 1 and 5 s! can be related
to the cerebrovascular compliance and may have imp
tant clinical implications in the diagnosis and treatme
of hypertension. On the other hand, the slow compon
exhibits peaks in the low~below 0.01 Hz! and mid
~0.01–0.1 Hz! frequency ranges. The precise location
the peaks in the midfrequency range varies from segm
to segment, exhibiting nonstationary behavior illustra
in Fig. 9 for two subjects over 2 h of data. Nonstationary
behavior is also evident in the second-order nonlin
dynamics~described by the two significant modes of t
second-order kernel! as illustrated in Fig. 10 for the sam
data. The nonlinear dynamics reside below 0.1 Hz a
mostly below 0.04 Hz, as demonstrated by the spectr
the output prediction residuals shown in Fig. 4. Nonl
ear interactions are identified by the off-diagonal pea
in the frequency domain representation of the seco
order kernel, as illustrated in Fig. 8. The nonlinear d
namics exhibit greater variability over time~nonstation-
arity! than the linear dynamics, as illustrated in Fig
9–11.

It is observed that the first nonlinear mode~derived
from eigen decomposition of the second-order kern!
exhibits most of its power below 0.04 Hz and is le
nonstationary than the second nonlinear mode, wh
also exhibits considerable power above 0.04 Hz and
to about 0.1 Hz. It is hypothesized that the nonline
autoregulation mechanisms involve intermodulation
fects of neural, metabolic, and endothelial factors on
impedance of the cerebrovascular bed in response
ABP changes.7,16 In the higher frequency range~above
0.1 Hz!, the regulatory mechanisms become less eff
tive in attenuating CBFV changes in response to A
changes, and the nonlinearities are absent.

Since the observed nonstationary behavior of the lo
frequency peaks may be attributable to unobserva
variables, such as metabolic activity, future studies w
apply the presented methodology to the case of mu
input systems, whereby observable variables such as
tidal CO2 ~surrogate for arterial CO2! will be used as
.

-

f

-

t

t

f

-

additional inputs14 in order to quantify their combined
dynamic effect ~along with ABP changes! on CBFV
fluctuations.

In conclusion, the improved accuracy achieved
nonlinear modeling methods can lead to a better qua
tative understanding of dynamic cerebral autoregulati
in normal or pathophysiological cases~e.g., hyperten-
sion!, under the influence of multiple systemic variabl
~neural and humoral! that have been long thought t
have an effect but have not been amenable to quan
cation, due to intrinsic nonlinearities and nonstationa
ties. This may be potentially useful for clinical diagnos
of patients with cerebrovascular diseases.
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