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Abstract—We report a method for accurate recovery of
tissue intrinsic fluorescence emission characteristics, including
fluorescence lifetimes and spectral profiles, from complex two-
dimensional (spectro-temporal) emission waveforms. Most algo-
rithms for analysis of fluorescence data address separately the
characteristics of either spectral emission or fluorescence relax-
ation time. We developed a novel nonparametric analytical method
that allows for identification and estimation of the intrinsic Fluo-
rescent Impulse Response Kernel (FIRK) simultaneously in time
and wavelength dimensions. Modeling of FIRK was based on the
characteristics of spectro-temporal fluorescence waveforms. Due
to the decaying behavior of the fluorescence, a linear combination
of discrete Laguerre functions was used to model the fluorescence
response in time. To address the large variability of spectral pro-
files of distinct fluorophores, a discrete Fourier series expansion
was used to model the variation of fluorescence intensity across
wavelength. The proposed method was validated on synthetic
fluorescence data and data measured from fluorescence lifetime
standards and tissue endogenous fluorescent biomolecules. We
determined that this method provides a direct recovery of the
two-dimensional FIRK and accurate estimation (residual error
<6%) of a broad range of fluorescence lifetimes including the
sub-nanosecond range. The FIRK retrieved using this method can
further facilitate modeling and recognition of pathological and
physiological conditions in tissues.

Keywords—Fluorescent impulse response kernel, Time-resolved
fluorescent spectroscopy, Two-dimensional system identification.

INTRODUCTION

Over the past few decades fluorescent spectroscopy has
been widely explored as potential method for investiga-
tion and characterization of biological tissues.1,3,6,12,21 The
fluorescence signal remitted upon the interaction of ex-
citation light with a biological sample contains informa-
tion about sample biochemical content, metabolic status,
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microenvironment, and morphology. This information can
be further used for characterization, diagnosis and moni-
toring of complex biological systems such as tissues and
cells. The presence of several endogenous fluorophores,
or intrinsic fluorescent bio-molecules in biological tissues,
including amino acids (tryptophan, tyrosine), enzyme co-
factors (nicotinamide adenine dinucleotide, flavin adenine
dinucleotide), and structural proteins (elastin, collagen),
offer the potential to directly probe the biochemical or
metabolic changes in diseased tissues using fluorescence-
based techniques.6,18 For example, measurements of en-
dogenous fluorescence have shown potential for diagnosis
and staging of atherosclerotic plaques and tumors.1,6,12,21

The fluorescence techniques, moreover, can enhance the
specificity of conventional diagnostic imaging methods
(ultrasound, magnetic resonance imaging, computer to-
mography) and enable the optimization of therapeutic
procedures.

The fluorescence emission is measured using either
steady-state or time-resolved techniques. Steady-state fluo-
rescence techniques have been widely employed since they
require a relatively simple and inexpensive instrumenta-
tion. However, the tissue fluorophores are characterized by
a broad-band spectra that often overlap. Thus the emis-
sion spectra of distinct fluorophores are difficult to resolve
when only steady-state techniques are used for investiga-
tion. The time-resolved approach involves measurements
of the time-dependent properties of the fluorescent emis-
sion. The fluorescence lifetimes provide effective means
of discrimination among fluorophores, as their spectrally
overlapped signals are often characterized by distinct time-
dependent intensity decays ranging from sub-picosecond to
microsecond time scales.6,18 The lifetimes are also sensitive
to microenvironment (pH, temperature, enzymatic activity),
thus lifetime measurements allow these parameters to be
analyzed. Detection of small changes in the environment of
fluorophores, for example, enables a better understanding
of the metabolic activities within tissue and assessment of
the diseased tissue response to therapy.
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Characterization and classification of tissues fluorescent
response rely on selection of signal analysis techniques able
to accurately reveal the true representation of the underlying
fluorescence dynamics. Numerous analytical tools includ-
ing least squares iterative reconvolution method,2,33 method
of moments,28 along with Laplace9 and Fourier6 trans-
form based techniques have been devised to retrieve the
intrinsic fluorescent response of the sample. These methods
have been widely applied in the field of fluorescence spec-
troscopy and thoroughly reviewed in the literature.11,18,28

However, the common limitation of these methods is that
they address separately the spectral and temporal profiles
of an observed fluorescent phenomenon.

The composite biological structures may contain dis-
tinct fluorophores that simultaneously respond to external
excitation, thus the resulting fluorescent output has a broad
spectral profile and varying intensity decay kinetics along
the emission spectrum. In this case the separate analysis
of individual decay curves has been found usually insuffi-
cient and may result in loss of valuable information about
competitive fluorescence processes in complex biological
systems. Information that may be further used for charac-
terization and identification of fluorescent systems. Con-
sequently, for an accurate recovery of complex fluorescent
decay phenomena it is advantageous to combine several
fluorescent decay experiments into a single analysis.4

The widely applied signal-processing tool, based on the
simultaneous analysis of multiple fluorescence decay ex-
periments, is frequently referred to as “global analysis”
approach.4 This method relies on the physical modeling of
the observed fluorescent phenomenon that is characterized
by a set of fitting parameters invariant to different exper-
imental settings. The error surface in global analysis was
found to be much better defined than in the case of individ-
ual curve analysis due to the large number of experimental
axes. Thus, the major advantage of the global analysis is
that the fitting parameters of the physical model can be re-
covered with much smaller uncertainties than in individual
curve analysis.4

In fluorescence-based diagnostic of tissues, however, it
is often difficult to build the accurate parametric physical
models of the intrinsic tissue fluorescence since there is
a limited insight into the processes governing the fluores-
cent response of such complex biological samples.35 In this
case the researcher rather has the option of “black box” or
nonparametric system identification method.17 This method
allows the derivation of an explicit mathematical expression
that describes quantitatively the input–output functional re-
lation from the observed input–output data. This approach
provides the purely empirical identification of sample fluo-
rescent properties and can serve as a foundation for further
characterization and recognition of different tissue types.

The main goal of this study was to develop a nonpara-
metric system identification method based on simultaneous
estimate of FIRK in time and wavelength dimension that

could be effectively used for the representation of com-
plex fluorescent system such as biological tissues. In the
following, we introduced mathematical concepts related to
a two-dimensional (2-D) estimation method of the FIRK,
and presented the validation of this analytical method on
simulated fluorescence data and experimental data collected
from various lifetime fluorescent standards and fluorescent
biomolecules.

Because most fluorescent measurements data are ana-
lyzed using digital signal processing algorithms, the pro-
posed identification method assumes discrete base and
the FIRK = H (nT, kλ). Experimental data used in cur-
rent study was acquired using a pulse-sampling time-
domain time-resolved technique (gated detection and fast
digitizer).21 This method has intrinsic advantages for in vivo
measurements of tissue, including fast and direct recording
of the time-resolved fluorescence intensity decay along the
entire emission spectrum, and suitability for fiber optic or
catheter type diagnostic systems.8 Recording of variations
in fluorescence intensity decay across emission spectrum
allows recovery of the steady-state spectra by integrating
the intensity decay signals, and provides a more complete
description of the biochemical content, thus improving the
specificity of fluorescence measurement.1,2,21

METHODS

Estimation Method for the Two-Dimensional Fluorescent
Impulse Response Kernel

Mathematical Model

Upon tissue sample excitation with a pulsed light probe
X(nT, kλ) or input signal, fluorophores within tissue re-
turn to their ground state by emitting photons (fluores-
cence emission). For complex biological systems such as
tissues, several fluorophores are likely to be excited simul-
taneously by a defined input light probe, however, each
fluorophore will be characterized by specific fluorescent
response. Therefore, to fully characterize the fluorescent
emission of a tissue sample the temporal evolution of flu-
orescent pulse transient Y(nT, kλ), or the output signal, is
recorded across the entire spectrum of emission.8

Under this assumption, to determine the intrinsic FIRK
one may employ a deconvolution method to separate input
light probe signal from fluorescence output in the presence
of system noise. We modeled this process as a 2-D sin-
gle input–single output system that is characterized by the
discrete convolution sum:

Y (nT, kλ) =
N−1∑
m=0

K∑
l=K0

H (mT, lλ) · X (nT − mT, kλ − lλ) ·

×T · λ + E(nT, kλ). (1)

where the terms are defined as follow: Y (nT, kλ),
fluorescence output signal; X (nT, kλ), input light probe;
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H (nT, kλ), fluorescent impulse response kernel;
E(nT, kλ), system error (noise); T, sampling interval
in time; λ, sampling interval in wavelength; N, total
number of data points in time dimension; K, wavelength in
the spectrum.

The target function of interest is H(nT, kλ). This function
carries the empirical information about intrinsic fluorescent
characteristics of the tissue, independent of the specific
waveform of excitation, experimental apparatus and exper-
imental conditions. The above model makes the assumption
that the distortions to the fluorescent signal due to the light
probe and data collection system are negligible or contribute
only as an additive experimental noise.

A second assumption that we made was to assume that
the sample contains non-interacting fluorophores resulting
in a spectrally linear fluorescence response, and that super-
position principle holds true. Physically this is equivalent
to the process of weighted direct energy transfer from the
input laser pulse emitted at certain wavelength into the flu-
orescent emission output at different wavelengths. In this
case one can represent the 2-D FIRK as follow:

H (nT, kλ) = HT (nT ) · Hλ(kλ). (2)

where (nT) and (kλ), independent variables for any n and k;
HT (nT), impulse response kernel in discrete time space;
Hλ(kλ), impulse response kernel in discrete wavelength
space.

The Basis Functions for Time and Wavelength Dimensions

The modeling of HT (nT) and Hλ(kλ) was based on typ-
ical fluorescent signal profiles that are observed in the
time and wavelength dimensions, respectively. Complete
orthonormal families of functions were selected as basis of
functions for both dimensions. This allows us to uniquely
build FIRKs that can reconstruct fluorescent responses of
arbitrary waveform.

Due to the exponentially decaying nature of the fluores-
cent response in time, for HT (nT) our basis of choice was the
discrete Laguerre family of functions.24,25 These functions
have a built-in exponential term that makes them suitable
for physical systems with exponential relaxation dynamics.
The Laguerre kernel expansion basis has been extensively
used for the modeling of the physiological processes.20,22,25

HT (nT ) =
X∑

i=0

Ci · Li (nT ). (3)

where Li (nT ) is the discrete time Laguerre functions (nT =
τ ≥ 0) defined as:

Li (τ ) = α(τ−i)/2 · √
1 − α

i∑
k=0

(−1)k ·
(

τ

k

)
·
(

i
k

)
·

×αi−k · (1 − α). (4)

where Ci , unknown Laguerre coefficients; α, parameter
that determines the rate of exponential decline of Laguerre
functions; X, total number of Laguerre functions used for
expansion.

The length of the kernel in time determines the memory
of the system. The maximum length corresponds to the
entire length of the signal output matrix in time; shorter
lengths are more feasible for optimal computational perfor-
mance since the intrinsic fluorescent decay is faster than
the observed cumulative output. The optimal length of the
kernel was determined using an optimization routine to
produce the best-fit numerical model.

The intrinsic Laguerre parameter α was estimated based
on the kernel length and number of Laguerre functions,
and accepted when the value of highest order Laguerre
function at the last point of the kernel was reduced to a
level less than 5% of its absolute maximum. This produces
computationally compact representation of kernel. The use
of the discrete time Laguerre family of functions offers
accurate kernel estimation from relatively short experimen-
tal data records in presence of data contaminating noise.24

This is a very useful feature for modeling of fluorescent
processes with fast decay kinetics in the sub-nanosecond
range where the length of the experimental data record
and therefore the resolution of the decay surface are lim-
ited by the currently available instrumental data acquisition
rates.

Since the wavelength representation of Hλ(kλ) reflects
the spectral profile of the analyzed sample, it varies sig-
nificantly with sample type. To address this variability, the
discrete orthogonal Fourier series expansion was selected
as basis for the wavelength dimension. Fourier series expan-
sion is widely exploited in signal analysis and biomedical
signal processing.5,29 The discrete time Fourier series de-
composes a discrete time signal into a sum of discrete time
exponential functions:

Hλ(kλ) =
M−1∑
p=0

Ap · exp

{
j p

2π

M
kλ

}
=

M−1∑
p=0

Ap · Fp.

(5)

where Ap, unknown series coefficients; M, total number of
data points in wavelength dimension.

To summarize, FIRK is written in the form:

H (nT, kλ) =
X∑

i=0

Ci · Li (nT )
M−1∑
p=0

Ap · Fp(kλ). (6)

where Ci and Ap are the unknown coefficients of Laguerre
and Fourier functions.

To determine these coefficients we employed least-
squares estimation procedure for the 2-D problem. This
method is described in the subsequent section.
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Least-Squares Estimation Procedure for the 2-D Problem

The nonlinear least-squares fitting methods based on the
minimization of the chi-square statistic is the most popu-
lar approach for the analysis of fluorescence emission.18,28

However, the use of chi-square function as a criterion for
model selection requires additional assumptions regarding
the statistics of residual data and experimental variance
for the specific instrumentation used. Generally, it is im-
plied that the measurement errors either follow the Gaus-
sian distribution (or random noise signal) or Poissonian
distribution (in single photon counting techniques). This ap-
proach is used in the analysis of fluorescent decays acquired
with time correlated single photon counting (TCSPC) tech-
nique, the most commonly used method for acquiring time-
resolved fluorescence data, where the statistical distribution
of experimental noise is known.27,28 If the error statistics
deviates from Gaussian or Poissonian, the experimental
variance has to be estimated or assumed prior to the anal-
ysis of decay curves. For the pulse-sampling time-resolved
fluorescence spectroscopy technique, however, the mea-
surement experimental variance is not known. Representa-
tive experimental data are needed to numerically evaluate
the statistical distribution of experimental noise. This factor
lead to an obvious problem of biased estimate of fluorescent
impulse response31,32 and can sometime mask important
information contained in the model residual signal.

The least-squares minimization algorithm presented
here allows for the best fit estimate by selecting the fluores-
cent impulse response kernel that would minimize the sum
of squares of all the errors.15 We made no assumption about
the statistic of system noise, except that it is additive to the
fluorescent output signal and the instrument does not intro-
duce systematic errors. To practically implement the non-
parametric model described above and calculate the coeffi-
cients of fluorescent impulse response kernel, we employed
classical linear least-squares estimation technique. The ad-
vantage of this method is that the mathematical model can
be written as a large but over-determined system of linear
equations. The total number of the coefficients (unknown
parameters) that is estimated is significantly less then the
number of linear equations used in the analysis. In this
case, the least-squares solution to the identification prob-
lem is unique. When the involved experimental signal has
little or no experimental repeatability (statistics), as in case
of fluorescence measurements in vivo, the over-determined
system guarantees the unique solution and increases the
confidence of the recovered model parameters.

To proceed, the 2-D convolution sum is restated in the
matrix-vector format conventional for linear least-squares.
Thus Eq. (1) is rewritten in the following form:

Y (nT, kλ) =
M−1∑
i=0

X∑
p=0

Dip · Gip(nT, kλ) + E(nT, kλ).

(7)

where Dip = Ci · Ap, coefficients to be estimated;
E(nT, kλ), noise; and Gip(nT, kλ) is defined as:

Gip(nT, kλ) =
N−1∑
m=0

K−1∑
l=0

Li (nT ) · Fp(kλ) ·

×X (nT − mT, kλ − lλ) · T · λ; (8)

The function Gip(nT, kλ) is determined by the experi-
mental input data and choice of orthogonal basis functions
in both time and wavelength dimensions.

Next, the summation in Eq. (7) was opened and the terms
rearranged to fit the desired classical matrix-vector format:

Ȳ = G · D̄ + Ē . (9)

where Ȳ , output vector; D̄, vector of coefficients; Ē , error
vector; G, input matrix that are defined below as:

Ȳ = [Ȳ (0, 0); Ȳ (0, 1 · λ); . . . Ȳ (0, (M − 1) · λ); . . .

Ȳ ((N − 1) · T, 0); Ȳ ((N − 1) · T, (M − 1) · λ)].

Ē = [E(0, 0); E(0, 1 · λ); . . . E(0, (M − 1) · λ); . . .

E((N − 1) · T, 0); E((N − 1) · T, (M − 1) · λ)].

D̄ = [D00; D01; . . . D0x ; D10; . . . DM−1,0;

DM−1,1; . . . DM−1,x ].

G =




G00(0, 0); . . . G0x (0, 0); . . . G M−1,0(0, 0); . . . G M−1,x (0, 0)

G00(0, λ); . . . G0x (0, λ); . . . G M−1,0(0, λ); . . . G M−1,x (0, λ)

. . .

G00((N − 1)T, (M − 1)λ); . . . G M−1,x ((N − 1)T, (M − 1)λ)


 .

(10)

The least-squares solution to the 2-D problem is given
by the following equation:

D̄ = (G ′ · G)−1 · G ′ · Ȳ . (11)

Using the values from the vector of coefficients D̄ the
2-D FIRK H(nT, kλ) can be built.

Because acquisition of fluorescence data in clinical cir-
cumstances results in the lack of knowledge of the noise
level for each data point, there is a need to estimate the
experimental uncertainties during data analysis. In the case
of no or very limited experimental statistics, the Cramer-
Rao lower bound to the estimate30 allows evaluation of the
least minimal model error. We employed this method in this
study. The Cramer-Rao lower bound to the estimate of the
variance associated with the determined elements of D̄ was
calculated using the following formula:

var(D̄) = (G ′ · G)−1 · σ 2
e . (12)

where σ 2
e is the variance of the residual errors E(nT, kλ).

This is a lower bound on the precision that cannot be su-
perseded.
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One numerical requirement of obtaining the good esti-
mates of D̄ is that the matrix (G ′ · G) must not be singular
or ill-conditioned, since it has to be inverted; otherwise the
variance of the coefficient vector D̄ will become infinite
or very large. However, in real experimental applications
there is a possibility to encounter the ill-conditioned data
matrix and this situation requires special numerical treat-
ment in order to reach the accurate and stable solution. The
successful implementation of the model depends on the
use of the developed robust numerical algorithms7,13,16,17

that address the matrix inversion problem. In practice, we
implemented the singular value decomposition method to
ensure the stability of the solution.31,32

Goodness of the Fit Criteria

The use of the autocorrelation function to test for white-
ness of the residuals is widely accepted as a method of merit
for goodness of fit between model and experimental data
in the signal analysis of various time-varying processes.5,29

We replaced the classical goodness of fit test for single
dimension autocorrelation function with the use of the 2-D
autocorrelation function. This allows us to simultaneously
check the randomness of the residual signal in both time
and wavelength dimensions. The 2-D formulation of auto-
correlation function, a commonly used method in optical
information processing, digital image processing and image
reconstruction, can be applied to any 2-D signal to test its
randomness. Thus, the coefficients of 2-D autocorrelation
matrix were calculated according to the formula:

R(m, l) =
N−m−1∑

n=0

K−l∑
k=K0

E(nT, kλ) × E((n + m)T, (k + l)λ)

(N − m − 1)(K − l − K0)
.

(13)

where m is the value of lag in time dimension; l the value of
lag in wavelength dimension; E(nT, kλ) the residual error
signal; N the total number of data points in time dimension;
K the wavelength in the spectrum.

The shape of the 2-D autocorrelation function of resid-
uals may serve as criterion to test spectrally linear fluores-
cence response. To assess the extent of linearity of residual
fluorescent signal by the means of 2-D autocorrelation test,
the computational routine has to be established for calcu-
lation of 2-D confidence interval surfaces. Since the time-
resolved pulse sampling fluorescence lifetime spectroscopy
technique does not allow a direct estimation of the experi-
mental noise statistics, this lack of knowledge about mea-
surement uncertainty has to be addressed at the data analysis
stage.18,31 In this case, reference statistical parameters of
the experimental uncertainties have to be estimated through
the computing intensive statistical methods. In these meth-
ods, the observed data are used to generate the confidence
intervals by means of randomization.23 Randomization tests
have several advantages, including flexibility and relative
ease of implementation without distributional assumptions

(e.g. Normal or Poisson). In our study, the confidence inter-
vals for 2-D autocorrelation test were generated using the
following randomization procedure.

First, we rearranged the order of the model residual er-
rors E(nT, kλ) over the entire time–wavelength matrix of
the signal by shifting them randomly; second, the 2-D au-
tocorrelation function of the residual errors was computed.
Those steps are repeated many times (e.g. 100 or more) and
the results were saved to generate large data set of auto-
correlation tests. Then, we computed the statistic of each
data point on the 2-D autocorrelation matrix with results
forming the standard deviation matrix. The average value
of standard deviation σ was calculated over the standard
deviation matrix and was used to generate the reference
confidence interval surfaces for 2-D autocorrelation test.

Coupling the 2-D autocorrelation test with evaluation
of the level of residual errors allowed us to assess the rel-
ative contribution from linear and nonlinear parts of the
signal into the cumulative intrinsic fluorescent output, thus
to estimate the extent of sample’s spectrally linear fluores-
cence response. This analysis cannot be performed using
only time-dependent fluorescent signal processing routines,
since these routines implicitly assume spectrally linear be-
havior of the analyzed fluorescent sample, thus making
the proposed 2-D system identification technique a feasible
fluorescent system diagnostic tool.

Another criterion to monitor the adequacy of model
fit to the experimental data was time-integrated fluores-
cent spectrum for experimental and reconstructed sig-
nals that correspond to conventionally measured steady-
state fluorescent spectrum along the region of fluorescent
emission.

Optimization Criterion

When recovering the fluorescent impulse response ker-
nel H(T, kλ) from experimental noisy signal the reduction
of the total number of model coefficients while keeping the
adequate model fit is essential for producing a computa-
tionally economical and compact routine.

The total number of model coefficients and their opti-
mal values depend on the set of the adjustable parameters
of our model. These parameters include the total number of
Laguerre and Fourier basis functions used and the length
of the kernel in time dimension (due to the time-dependent
behavior of the fluorescence intensity). As a criterion for op-
timization purposes we used the least-squares error function
J (the weighted sum of squares of the difference between
the data values and the model estimated values) calculated
for each initial adjustable model parameter set.

J = 1

(N − K ) · (K − K0)
·

N−1∑
n=0

K∑
k=K0

{Yexp(nT, kλ)

− Yest(nT, kλ)}2 (14)
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The minimum value of error function J corresponds to
the optimal initial model parameter set that allows achiev-
ing the optimal mean-square approximation of the system
output. Where Yexperimental(nT, kλ) and Yestimated(nT, kλ) are
the corresponding measured and reconstructed fluorescent
output computed using the convolution of estimated fluo-
rescent impulse response kernel H(nT, kλ) with input laser
pulse X(nT, kλ).

All computations were performed with the software
package MATLAB (The MathWorks, Natick, MA).

Algorithm for Validation

Validation on Synthetic Data: Prove of Unique Solution

The efficacy of the proposed system identification ap-
proach is illustrated below using computer-simulated fluo-
rescent signals. The synthetic fluorescent output was con-
structed to emulate the model output. First, we generated the
FIRK Hmodel(nT, kλ) using Laguerre and Fourier functions
(Eqs. (7)–(10)), then the simulated FIRK was convolved
with the input laser pulse Xmodel(nT, kλ) to create a synthetic
fluorescent output signal Ymodel(nT, kλ). The simulated data
set contained observations at exactly the same independent
variables, i.e. time and wavelength axes, as the original
signal.

To represent experimental system uncertainties, the sim-
ulated data set was contaminated by additive synthetic
‘random noise.’ The additive synthetic random noise was
generated by means of randomization23 using the exper-
imentally measured system noise. Then, the order of ex-
perimentally measured system noise was rearranged over
the entire time–wavelength matrix of the signal by shift-
ing the values randomly and ensuring that the statistical
descriptors (the mean and the variance) remain the same
as for measured system noise. This is to satisfy our initial
assumption that the distortions to the fluorescent signal due
to the light probe and data collection system are negligible
or contribute only as an additive experimental noise. Thus,
the generated synthetic fluorescent signal Ymodel+noise(nT,
kλ) is in conformity to all assumptions made above in the
development of system identification method and serves as
a test signal for algorithm validation (Fig. 1(a)).

The synthetic fluorescent data was used to prove that
the proposed algorithm for the estimation of FIRK yields
a unique solution. First, the ‘noise containing’ synthetic
fluorescent output signal was processed to obtain the cor-
responding FIRK Hmodel+noise(nT, kλ). Second, the ‘noise
free’ synthetic fluorescent output signal was processed us-
ing the same set of adjustable parameters as the ‘noise con-
taining’ synthetic fluorescent output signal. The residual
signal was calculated between the two fluorescent impulse
response kernels Hmodel(nT, kλ) and Hmode+noisel(nT, kλ).
The value of residual error function J for compared FIRK
signals is in the order of 10−15 that is at the level of digi-
tization error of the computing system. We concluded that

FIGURE 1. (a) Synthetic fluorescent output signal. Inset: addi-
tive random noise; (b) results of the 2-D autocorrelation test
for model residual errors. Insets: 2-D autocorrelation (time, left
panel; wavelength, right panel).

the ‘noise free’ FIRK is a 100% fit to FIRK from synthetic
‘noise containing’ signal as demonstrated by the zero level
of residual values, thus proving the unique solution to the
system identification problem.

Validation of Synthetic Data: Analysis of Residuals

The performance of the 2-D autocorrelation test was
evaluated for the ideal case, when the synthetic fluores-
cent data is contaminated by the additive random noise
Ymodel+noise(nT, kλ) as mentioned above. This data served
as fluorescent output and used for retrieval of FIRK and
further reconstruction of model signal Ymodel(nT, kλ). The
residual data matrix between the synthetic ‘noise contain-
ing’ signal Ymodel+noise(nT, kλ) and reconstructed model sig-
nal Ymodel(nT, kλ) was analyzed using a 2-D autocorrelation
test. Before the application of autocorrelation test, the mean
of the residual matrix was calculated and subtracted from
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each data point on the residual surface to create zero mean
signal since mean shift model could also result in autocor-
relation between the values.

The resultant autocorrelation matrix is shown in
Fig. 1(b). Because the autocorrelation matrix is a sym-
metrical matrix only one quadrant is displayed. This matrix
presents the autocorrelation coefficients between each pair
of the residual errors E(nT, kλ) matrix. The diagonal ele-
ments of this matrix correspond to the correlation between
each residual data point. The center of the matrix repre-
sents the autocorrelation with zero lags in both time and
wavelength and is unity by definition (normalized autocor-
relation). The observed result exhibit the single non-zero
peak at zero lag in both time and wavelength dimensions.
This is the ideal case autocorrelation result that we can
achieve with our model on spectrally linear synthetic data.

Validation on Solutions of Fluorescence
Lifetime Standards

Time-resolved fluorescence data were collected from
fluorescence lifetime standards using a compact fiber-
based fluorescent spectroscopy apparatus for in situ
time-resolved laser-induced fluorescence spectroscopy of
tissue.8 The following fluorophores were used in this study:
9-cyanoanthracene in ethanol; Rose Bengal in both ethanol
and methanol; Rhodamine B in both ethanol and in DI
water; and mixture of 9-cyanoanthracene/Rhodamine B
mixture in ethanol.

The fluorescence emission was induced with a pulsed
nitrogen laser (337.1 nm emission wavelength, 1.2 ns
pulse width), measured in the spectral range from 360 to
700 nm (5 nm wavelength increment) and digitized with
5 GSamples/s sampling frequency. To improve the sig-
nal to noise ratio, each recorded fluorescence pulse tran-
sient (output signal) consisted of an average of 16 con-
secutive fluorescence pulses. Scattered laser pulse (input
signal) was measured at wavelengths below 337 nm. Ex-
perimental noise was measured at 400 nm after the samples
were removed. For signal processing the collected exper-
imental data were arranged into a two-dimensional ma-
trix format (wavelength, time) for both input and output
signals.

Since the experimental input signal is very narrow and
contains only laser line at 337 nm, it had to be zero padded
to span the same wavelength-time space as the collected
fluorescent output. To minimize the contribution of exper-
imental noise to the output signal, the mean value of ex-
perimental noise signal was subtracted from the analyzed
data before the estimation of the FIRK, H(nT, kλ). The ex-
perimental data collected from the fluorescence standards
was used to demonstrate that our mathematical method and
its numerical implementation do not introduce any artifacts
into calculated FIRK and allows the effective recovery of
the fluorescence time-decay constants.

Performance of the Deconvolution Technique:
1-D Laguerre Expansion of Kernels vs. 2-D
Laguerre-Fourier Expansion of Kernels

The performance of the fluorescent system identifica-
tion method developed in this study was evaluated by com-
paring the variability of fluorescence lifetimes along the
emission spectrum retrieved with our method (2-D anal-
ysis) with that obtained using the conventional approach
for time-dimension only (1-D analysis). For 1-D analy-
sis the fluorescence impulse response function is retrieved
separately for each wavelength using an algorithm based
on the first order Laguerre expansion of kernels.16,20 For
each fluorophore, the lifetime variability was evaluated for
every wavelength in the emission spectrum. For single flu-
orophore solutions, the estimated spectral mean and stan-
dard deviation of lifetime values were calculated across the
spectrum of emission using both 1-D and 2-D analysis. For
the 9-cyanoanthracene/Rhodamine B mixture solution, the
estimated spectral mean and standard deviation of lifetime
values were calculated across the spectrum of emission of
each individual fluorophore (the spectra overlap is mini-
mal). In both cases all initial input system parameters were
kept identical.

RESULTS

Validation on Solutions of Fluorescent Lifetime Standards

The average lifetime value was estimated as the time at
which the FIRK H(nT, kλ) decays to 1/e of its maximum

TABLE 1. Lifetime (τ) values for fluorescent standard solutions.

Peak 2-D H(nT, kλ) 1-D literature10,19 Spectral 2-D spectral 1-D spectral mean
Sample Solvent λ (nm) τ(ns) τ (ns) range λ (nm) mean τ ± SD (ns) τ ± SD (ns)

9/CA Ethanol 440 11.31 11.85 370–520 12.78 ± 0.55 12.81 ± 0.69
Rhodamin B Ethanol 580 2.76 2.85 510–650 2.73 ± 0.16 2.88 ± 0.41
Rhodamin B DI water 580 1.60 1.52 510–650 1.70 ± 0.18 2.19 ± 0.32
Rose Bengal Ethanol 580 0.90 0.85 530–650 0.79 ± 0.15 0.89 ± 0.34
Rose Bengal Methanol 575 0.62 0.54 530–650 0.61 ± 0.12 0.68 ± 0.22
9CA∗ /Rhodamin Ethanol 440 10.73 11.85 410–520 9.74 ± 0.41 9.78 ± 0.53

B∗∗ Mix
9/CA Ethanol 580 2.98 2.85 540–650 2.67 ± 0.18 2.95 ± 0.30
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FIGURE 2. Results for Rose Bengal in 10−6 M ethanol solution. (a) FIRK. (b) Model reconstruction of fluorescent signal. Inset:
residual errors between model and experimental fluorescent outputs. (c) 2-D autocorrelation function of residuals. Insets: 2-D
autocorrelation function (time, left panel; wavelength, right panel). (d) Time decay profile at peak emission wavelength 575 nm. (e)
Steady-state emission spectra.
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FIGURE 3. Results for a 5 × 10−6 M solution of 9-cyanoanthracene and Rhodamin B mixture dissolved in ethanol. (a) FIRK. (b)
Model reconstruction of fluorescent signal. Inset: residual errors between model and experimental fluorescent outputs. (c) 2-D
autocorrelation function of residuals. Insets: 2-D autocorrelation function (time, left panel; wavelength, right panel). (d) Time decay
profile at peak wavelength 580 and 440 nm Model reconstructed fluorescent signal ± SE and experimental fluorescent signal. (e)
Steady-state spectra. Model reconstructed fluorescent signal ± SE and experimental fluorescent signal.
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intensity. The lifetime values for fluorescent standards re-
trieved using our method were found in agreement with
those reported in the literature.10,18,19 The fluorescence
lifetimes for each component at main peak emission are
summarized in Table 1. Figure 2 depicts the results for
Rose Bengal in ethanol, a fluorescent probe with very fast
decay kinetics (lifetime below 1 ns).

To illustrate the potential of current algorithm to re-
solve simultaneously the complex fluorescence emission of
a mixture of fluorophores, we applied the algorithm to flu-
orescence data acquired from a mixture of two fluorescent
standards in solution: 9-cyanoanthracene (short-lived) and
Rhodamine B (long-lived) in ethanol. The relative concen-
tration of Rhodamine B in mixture is 50%. The estimated
FIRK are presented in Fig. 3.

For all reported cases, we evaluate the level of residual
errors (Table 2). The maximum, mean and standard devi-
ation values of residual errors were given in percentages
to the maximum normalized intensity of the measured
fluorescent signal. For example, in the case of the mixture
of two fluorescent standards in solution the mean value of
residual errors is 4.5% and residual errors do not exceed
6.2% of the maximum measured fluorescent output signal.
For all reported cases, the residual signals were found to not
exceed 6.5% of the maximum fluorescence intensity output
signal. The residual errors were further tested for whiteness
using the 2-D autocorrelation test. Results for Rose Bengal
solution and mixture solutions are displayed in Figs. 2
and 3. Comparison of the 2-D autocorrelation surfaces of
residual errors from experimental fluorescent data with
ideal case 2-D autocorrelation surface from synthetic data
suggests a remaining nonrandom informational content
left. This is an important observation indicating that sample
fluorescence cannot be fully described by the linear model
employed in this work. However, the level of residual
error allows us to estimate the relative contribution from
linear and nonlinear parts of the signal into the cumulative
intrinsic fluorescent output, thus to estimate the extent of
sample spectral linearity (Table 2).

Performance of the 1-D vs. 2-D Deconvolution Technique
on the Mixture of Fluorescent Standard Solutions

The mean lifetime values for 9CA/Rhodamin B mixture
in solution and Rose Bengal in ethanol are presented in

TABLE 2. Residual values for fluorescent standard solutions.

Residual errors E(nT, kλ) (%)

Sample Solvent Max Mean SD

9/CA Ethanol 6.10 5.30 2.09
Rhodamin B Ethanol 5.90 5.05 1.89
Rhodamin B DI water 6.07 4.80 1.03
Rose Bengal Ethanol 6.01 5.90 1.71
Rose Bengal Methanol 5.15 4.80 1.20
9CA/Rhodamin B Mix Ethanol 6.20 4.50 1.92

FIGURE 4. The 1-D and 2-D estimated fluorescence lifetime
values for fluorescent standard solution of 9-cyanoanthracene
and Rhodamin B mixture in ethanol and Rose Bengal in
ethanol.

Fig. 4; the spectral ranges and the mean lifetimes ± standard
deviation for each fluorescent standards are given in Table 1.

In each case, the values of standard deviation were found
smaller for 2-D FIRK estimation when compared to 1-D ap-
proximation. These results suggest that the application of
the 2-D approach results in less variability in lifetime values
across the spectrum of emission as compared 1-D method,
thus yielding a more robust lifetime estimate. This demon-
strates that the proposed 2-D system identification method
is less sensitive to the variations in noise level across the
emission spectrum. The noise contamination can severely
influence the accuracy of retrieving the true fluorescent
lifetimes. This is especially important for the estimation
of the decay dynamics measured from mixture of fluores-
cent components with overlapping spectra or short-lived
fluorophores (lifetimes <2 ns). Accurate measurements
of short-lived fluorescence are more likely to depend on
the time-resolution of the experimental system. The larger
the number of data points acquired along the decay curve
the more accurate estimation of fluorescence lifetimes can
be achieved.

Application to Experimental Data from
Fluorescent Biomolecules

In this section we present results from the FIRK
estimation conducted on the fluorescent output from
samples of major endogenous tissue fluorescent bio-
molecules including elastin and distinct types of collagen.
The five fluorescent tissue specimens tested in this study
include commercially available samples (Sigma-Aldrich)
of elastin, collagen type I from tendon, collagen type I
from calf skin, collagen type II from cartilage and collagen
type V from placenta.

The fluorescence lifetime values of the fluorescent
bio-molecules were retrieved using the 2-D system
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TABLE 3. Lifetime values for fluorescent bio-molecules.

Residual errors E(nT, kλ) (%)
Peak 2-D H(nT, kλ) 1-D literature20,21

Sample λ (nm) τ (ns) τ (ns) Max Mean SD

Elastin Ligament 420 1.8 1.3 5.87 4.50 1.10
Collagen I Tendon 440 2.42 3.9 5.90 4.10 2.08
Collagen I Calf Skin 435 0.92 — 6.15 5.70 1.80
Collagen II Cartilage 390 3.10 — 5.10 4.83 1.15
Collagen V Placenta 430 0.60 — 6.02 5.40 0.90

identification method described in this study. The lifetime
values at peak emission spectrum are displayed in Table 3.
These values were found in agreement with those reported
in the literature for these molecules.20,21 The applicabil-
ity of the algorithm is illustrated on time-resolved spectra
collected from samples of collagen II that is characterized
by slow decay kinetics (Fig. 5). The remaining residual
errors are within 6% of the maximum value of fluorescence
intensity (Table 3), although the 2-D autocorrelation tests
exhibit a well-defined non-random pattern. The low level
of residual errors suggests that the fluorescence emission of
these fluorescent biomolecules can be well described within
our basic model assumptions.

DISCUSSION

In this study, we used a linear combination of discrete
Laguerre functions combined with a discrete Fourier series
expansion to model the profile of fluorescence emission.
The fluorescence intensity decay (time-dimension) was fit-
ted to a maximum of eight Laguerre functions. This number
of functions was found sufficient for providing an accurate
signal reconstruction and kernel estimation for both flu-
orescence lifetime standards in solutions and endogenous
fluorescent molecules in tissues. The variation of fluores-
cence intensity across spectrum (wavelength-dimension)
was approximated using a number of discrete Fourier basis
functions that equal the total number of wavelengths for
each fluorescent component. The modeling results are re-
ported assuming a linear response of fluorescent sample in
response to a pulsed light stimulus.

Our results demonstrated that the 2-D implementation of
FIRK estimation provides a accurate estimate of fluorescent
response of biological samples, provided that experimental
conditions satisfy the basic model assumption. The sam-
ples with significant nonlinear fluorescence response would
likely exhibit large value of residual errors in our best-fit
estimate. For the reported cases, we achieved a low level
of residual signal that does not exceed 6% of the maxi-
mum normalized fluorescence intensity output indicating a
relative linear fluorescence response of analyzed samples
in response to light stimulus. However, further analysis of
the 2-D autocorrelation suggested that there is a residual
information content not attributed by our model.

Additionally, should the researcher encounter such a bi-
ological system with significant nonlinearities, our tech-
nique can be further expanded to incorporate these nonlin-
ear effects of energy transfer from light excitation pulse to
the fluorescent biological sample by employing the higher
orders of the Laguerre expansion kernels and adding the
nonlinear signal processing blocks to the current model.
Such a diagnostic test is not possible to be perform with
traditionally 1-D deconvolution techniques, since they en-
tirely rely on the assumed linear behavior of the system.
In this case, the problem has to be addressed either with
additional experiments on the representative sample type,
or by employing the certain model of interaction between
the light radiation and biological matter. Both scenarios can
reduce the accuracy of system identification and increase
the complexity of experimental investigation.

Another useful feature is that the selection of basis ex-
pansion functions for time and wavelength dimensions is
merely a researcher choice and can be easily tailored to
observed phenomena with the rest of the mathematical
framework intact. This option may allow for the more com-
pact signal processing routines that are application specific
and computationally effective. The two dimensional single-
input single-output framework of the algorithm allows to
identify the intrinsic fluorescence parameters of a sample
excited with virtually any input light probe spatio-temporal
profile. Therefore, the investigator is not limited to the use
of only narrow band short laser pulse to probe the fluo-
rescent sample, but also can employ the complex spatio-
temporal light input signal, i.e. the simultaneous coherent
excitation at different wavelengths, train of laser pulses or
broadband pulsed ultraviolet light sources, etc., depending
upon application. Such an approach not only can yield more
information about the studied specimen but also enables
simplification of the entire experimental setup.

CONCLUSION

An important feature of time-resolved fluorescence data
is its multidimensional nature intensity vs. wavelength
vs. time. The system identification method presented in
this study allowed for the simultaneous analysis of the
multidimensional fluorescence decay surface by taking
into account the spectral and temporal aspects of fluores-
cence emission output with just a few basic and general
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FIGURE 5. Results for Collagen type II. (a) FIRK. (b) Model reconstruction of fluorescent signal. Figure insert: (a) Residual error
between model and experimental fluorescent outputs. (b) Model reconstruction of fluorescent signal. Inset: residuals between
model and experimental fluorescent outputs. (c) 2-D autocorrelation function of residuals. Insets: 2-D autocorrelation function
(time, left panel; wavelength, right panel). (d) Time decay profile (displayed at peak wavelength 380 nm). Model reconstructed
fluorescent signal ± SE and experimental fluorescent signal. (e) Steady-state spectra. Model reconstructed fluorescent signal ±
SE and experimental fluorescent signal.
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assumptions made about the light probe/fluorescent sam-
ple interactions and experimental system conditions. This
provides reliable and accurate recovery of the intrinsic flu-
orescent parameters of the investigated sample from the
measured cumulative fluorescent output as illustrated with
data from fluorescent standard solutions and fluorescent
biomolecules.

This study supports previously reported evidence4,18,33

that for complex fluorescent systems it is advantageous to
consider simultaneous analysis of fluorescent decay data.
How does the nonparametric identification of optical fluo-
rescent system in combined time and wavelength spaces
relate to another multidimensional global analysis4 ap-
proach? The application of nonparametric, or “black box”
system identification method to analysis of fluorescence
intensity decay from biological samples do not dependent
on the physical model of the observed fluorescent phe-
nomenon, and thus allows expansion of the intrinsic fluo-
rescent response of any form without a priori assumption
of its spatio-temporal profile. This characteristic makes this
method suitable for applications where little or no informa-
tion is available to build an accurate parametric physical
model of intrinsic fluorescence. In contrast, the use of para-
metric global analysis4 for system identification purposes
will require such information and thus the applicability
of such technique is limited. The presented nonparametric
approach, however, shares the major advantages of global
analysis by employing the same concept of global error that
is much better defined than in individual curve analysis due
to the large number of experimental axes. The same con-
cept of overdetermination of fluorescent system is realized
through the use of the direct least-squares implementation
in combined time and wavelength dimensions. When the
involved experimental signal has little or no experimental
repeatability (statistics) as in case of in vivo fluorescence
measurements the over-determined system guarantees the
unique solution and increases the confidence of the re-
covered model parameters, thus solving the identifiability
problem. The estimated FIRK can be further examined for
modeling and classification of pathological and physiolog-
ical conditions of tissues. This approach shows potential
for development of reliable optical diagnostic methods that
take advantage of advances in non-parametric system iden-
tification techniques.
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