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Abstract—Effective modeling of nonlinear dynamic system
can be achieved by employing Laguerre expansions and f
forward artificial neural networks in the form of the Laguerre
Volterra network~LVN !. This paper presents a different formu
lation of the LVN that can be employed to model nonline
systems displaying complex dynamics effectively. This
achieved by using two different filter banks, instead of one
in the original definition of the LVN, in the input stage an
selecting their structural parameters in an appropriate way.
sults from simulated systems show that this method can y
accurate nonlinear models of Volterra systems, even when
siderable noise is present, separating at the same time the
from the slow components of these systems effective
© 2002 Biomedical Engineering Society.
@DOI: 10.1114/1.1458591#
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INTRODUCTION

In the mathematical modeling of physiological sy
tems, a practical problem arises when the dynamics
the system cover vastly different time scales~slow and
fast!, because the fast time scale requires a high s
pling frequency and the slow time scale necessitates l
experimentation times. The combination of these t
requirements leads to very large amounts of stimul
response data and presents a serious challenge to
efficacy of the estimation methods used for system id
tification and modeling. This problem is further aggr
vated by the presence of nonlinearities, since the la
impose additional burdens of accuracy and sensitivity
the estimation methods.

The subject paper presents a novel methodology
which this problem can be effectively resolved in t
nonlinear context. The methodology employs a varian
the recently introduced Laguerre–Volterra networks
modeling nonlinear systems,1 whereby two Laguerre fil-
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ter banks are used with distinct trainable parameters ‘
pha’’ ~corresponding to the slow and fast dynamics of t
system!. It is shown that this method addresses the afo
mentioned problem in a practical and effective mann

Previous modeling studies of nonlinear Volterra sy
tems demonstrated the practical advantages of using
guerre expansions of the Volterra kernels in order
achieve model compactness and estimation accura5

The resulting Laguerre expansion technique~LET! can
be combined with feedforward artificial neural networ
utilizing polynomial activation functions in the form o
the Laguerre–Volterra network~LVN !. The latter re-
ceives as its input vector the outputs of a Laguerre fi
bank fed by the input signal of the system.1 The perfor-
mance of the LET and LVN modeling methods has be
shown to be excellent as long as the Laguerre param
a is properly selected, since the latter determines
required number of Laguerre functions for the kern
expansion, i.e., determines the modeling parsimony
efficiency. An adaptive estimation method has been
cently introduced for selecting the Laguerre parametea
(0,a,1) using the actual stimulus-response data~sub-
mitted for publication!.

It is critical to note that the Laguerre parametera
defines the time scale for which the Laguerre expans
of the system kernels is most efficient in terms of co
vergence~i.e., yields satisfactory approximations wit
the minimum number of Laguerre basis functions!. Thus,
efficient use of the LET or LVN method requires a sm
a ~close to 0! for systems with fast dynamics or a larg
a ~close to 1! for systems with slow dynamics.

In the case of systems with both fast and slow d
namics, the choice of a single parametera cannot lead to
an efficient representation of the system and may
produce satisfactory results. Therefore, the use of
Laguerre filter banks characterized by two distinct L
guerre parameters holds the promise that the fast
slow components of a system can be modeled sepa
ly and effectively. The proposed model represent
ion also captures the possible nonlinear interactions
tween slow and fast dynamics in the form of cross-term
The proposed methodology is presented in the next s
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FIGURE 1. The LVN with two Laguerre filter banks ˆb j
„1…

‰ and ˆb j
„2…

‰ that preprocess the input x „n …. The hidden units in the
second layer have polynomial activation functions ˆf k‰ and receive input from all Laguerre filters. The output y „n … is formed by
summation of the outputs of the hidden units ˆzk‰ and the output offset y 0 .
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tion. Illustrative examples with synthetic data are giv
in the corresponding section. An application of th
method to actual experimental data of cerebral hemo
namics in humans is presented in a companion pa
~submitted for publication as Part II!.

METHODOLOGY

The proposed architecture of the Laguerre–Volte
network with two Laguerre filter banks~LVN-2! that
preprocess the input is shown in Fig. 1. The two fil
banks are characterized by different Laguerre parame
(a1 ,a2) and may contain different numbers of Laguer
functions ~filters!. By assigning a small value toa1 for
the first filter bank and a large value toa2 for the second
one, we can simultaneously model the fast and the s
components of a system separately.

The asymptotically exponential structure of the L
guerre functions makes them a good choice for mode
physiological systems, since the latter often exhibit
ymptotically exponential structure in their Volterra ke
nels. However, one cannot rule out the possibility
system kernels that do not decay smoothly—a situa
that will require either a large number of Laguerre fun
tions or an alternate~more suitable! filter bank. The
Laguerre parametera defines the relaxation rate of th
r

s

Laguerre functions and determines the convergence
the Laguerre expansion for a given kernel functio
Larger a values result in longer spread of significa
values~slow dynamics!.

The choice of the Laguerre parameters (a1 ,a2) for
the two filter banks is very important in order to achie
an efficient model representation of the system un
examination. However, this choice has been made h
tofore by trial-and-error procedures.1,2,10 We recently in-
troduced a computationally efficient method, where
the Laguerre parameter is treated as a trainable param
of the Laguerre–Volterra network~submitted for publi-
cation!. This automates the procedure for the determi
tion of suitable Laguerre parameters, guided by the
tual experimental data.

The discrete-time Laguerre functions employed in t
filter-banks are defined for thej th order as8

bj
( i )(m)

5a i
(m2 j )/2~12a i !

1/2(
k50

j

~21!kS m
k D S j

kDa i
j 2k~12a i !

k;

i 51,2, ~1!
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274 G. D. MITSIS and V. Z. MARMARELIS
where a1 ,a2 are the Laguerre parameters of the tw
filter banks ~both lying between 0 and 1!. The corre-
sponding Laguerre filter output is given by the discre
convolution ofbj

( i )(m) with the input signalx(n):

n j
( i )~n!5 (

m50

`

bj
( i )~m!x~n2m!; i 51,2. ~2!

The hidden units in the second layer have polynom
~instead of the commonly used sigmoidal! activation
functions in order to make the network functional
equivalent to a Volterra model and reduce the requi
number of hidden units.7 The input of thekth hidden unit
is given by

uk~n!5(
i 51

2

(
j 50

Li

wk, j
( i ) n j

( i )~n!; k51,2,...,K ~3!

and its corresponding output is

zk~n!5 (
m51

Q

cm,kuk
m~n!; k51,2,...,K. ~4!

The output of the network is given by a nonweight
summation of all the hidden-unit outputs~since the poly-
nomial coefficients are trainable! and a trainable offse
y0 :

y~n!5 (
k51

K

zk~n!1y0 . ~5!

The training of all the network parameters is pe
formed using the backpropagation algorithm in an ite
tive fashion.3 The amount by which a specific paramet
value is changed in each iteration is proportional to
value of the partial derivative of the cost function wi
respect to the specific parameter at that iteration. De
ing the cost functionJ(n) as the squared error«(n)
between the desired outputd(n) and the network outpu
y(n) at each time instancen:

J~n!5 1
2 @d~n!2y~n!#2 ~6!

the iterative relations become

wk, j i

( i ),(r 11)5wk, j i

( i ),(r )2gwS ]J

]wk, j i

( i ) D
r

5wk, j i

( i ),(r )1gw@«~n! f k8~uk~n!!n j i

( i )~n!# r , ~7!
cm,k
(r 11)5cm,k

(r ) 2gcS ]J

]cm,k
D

r

5cm,k
(r ) 1gC@«~n!uk

m~n!# r ,

~8!

y0
(r 11)5y0

(r )2gyS ]J

]y0
D

r

5y0
(r )1gy«

(r )~n!, ~9!

a i
(r 11)5a i

(r )2g i S ]J

]a i
D

r

5a i
(r )1g i«

(r )~n!(
k51

K

(
m51

Q

(
j 50

Li

m

3Fcm,kwk, j
( i ) uk

m21~n!
]n j

( i )~n!

]a i
G

r

, ~10!

wherer denotes the iteration index andgw ,gc ,gy ,g i are
fixed positive learning constants. Note that« (r )(n) is the
output error at ther th iteration andf k8

(r ) is the derivative
of the polynomial activation function of thekth hidden
unit at ther th iteration

f k8
(r )@uk

(r )~n!#5 (
m51

Q

mcm,k@uk
(r )~n!#m21. ~11!

The total number of unknown parameters in t
LVN-2 model is equal to (L11L2121Q)K13. It is
important to note here that this number is linear w
respect to the orderQ of the system, which makes thi
approach more practical for higher-order systems co
pared to other techniques~e.g., cross-correlation!, the
complexity of which depends on the system orderQ
exponentially.

The difficulty in training the parametera based on
the above Eq.~10! is evident, since the use of the bac
propagation algorithm requires computation of the par
derivatives of eachn j

( i )(n) with respect toa i . As can be
seen from Eq.~1!, bj

( i )(m) depends in a complex way o
a i , which makes this computation based on Eq.~2!
rather excessive for all practical purposes.

However, this task becomes greatly simplified if w
employ the recursive relations for the computation of t
Laguerre filter-bank outputs. Specifically, the outp
n j

( i )(n) of the j th discrete-time Laguerre filter of thei th
filter-bank can be expressed as follows:

n j
( i )~n!5b i@n j

( i )~n21!1n j 21
( i ) ~n!#2n j 21

( i ) ~n21!,
~12!

whereb i5a i
1/2.

The initial expression~for j 50! is slightly different:
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n0
( i )~n!5b in0

( i )~n21!1~12b i
2!1/2x~n!. ~13!

These recursive relations are obtained from theZ trans-
forms of the discrete-time Laguerre functions.8

We can see that it is easier to trainb i rather thana i

based on the iterative relations~12! and~13!. This can be
done by differentiating Eq.~12! with respect tob i :

]n j i

( i )~n!

]b i
5n j i

( i )~n21!1n j i21
( i ) ~n!; j i51,...,Li ~14!

with the following initial condition (j i50):

]n0
( i )~n!

]b i
5n0

( i )~n21!2
b i

A12b i

x~n!. ~15!

Then, the iterative expression for the training ofb i

becomes~for j i.0!:

b i
(r 11)5b i

(r )1g i«
(r )~n!(

k51

K

(
m51

Q

mH cm,kuk
m21~n!

3(
j 50

Li

wk, j
( i ) @n j i

( i )~n21!1n j i21
( i ) ~n!#J

r

. ~16!

In order to assist the reader in making the form
connection between the LVN-2 and the Volterra mode
let us now consider the Volterra model for aQth order
nonlinear time-invariant discrete-time system

y~n!5 (
n50

Q F(
m1

...(
mn

kn~m1 ,..,mn!x~n2m1!...

x~n2mn!G , ~17!

wherekn(m1 ,...,mn) is the nth order Volterra kernel of
the system. It can be shown that this representatio
equivalent with the LVN-2 representation having activ
tion functions of Qth degree in the hidden units. Th
Volterra kernels corresponding to the LVN-2 can be e
pressed in terms of the network parameters in the
lowing way:

k05y0 , ~18!

k1~m1!5(
i 51

2

(
k51

K

c1,k(
j 50

Li

wk, j
( i ) bj

( i )~m1!, ~19!
k2~m1,m2!5 (
i 151

2

(
i 251

2

(
k51

K

c2,k (
j 150

Li 1

3 (
j 250

Li 2

wk, j 1

( i 1) bj 1

( i 1)
~m1!wk, j 2

( i 2) bj 2

( i 2)
~m2!,

~20!

kn~m1 ,...,mn!5 (
i 151

2

... (
i n51

2

3 (
k51

K

cn,k (
j 150

Li 1

...

3 (
j n50

Li n

wk, j 1

( i 1) ...wk, j n

( i n) bj 1

( i 1)
~m1!...bj n

( i n)
~mn!.

~21!

From Eq. ~19! we can see that the first-order fasti
51) and slow (i 52) components of a nonlinear syste
can be expressed in terms of the network parame
separately:

k1,f~m1!5 (
k51

K

c1,k(
j 50

L1

wk, j
(1)bj

(1)~m1!, ~22!

k1,S~m1!5 (
k51

K

c1,k(
j 50

L2

wk, j
(2)bj

(2)~m1!. ~23!

For the higher order kernels, in addition to separ
slow and fast components, there exist cross-terms
represent nonlinear interactions between slow and
dynamics. For example, in the case of the second-o
kernel the following terms correspond to the fast a
slow components separately:

k2,f f~m1 ,m2!

5 (
k51

K

c2,k (
j 150

L1

(
j 250

L1

wk, j 1

(1) bj 1

(1)~m1!wk, j 2

(1) bj 2

(1)~m2!,

~24!

k2,SS~m1 ,m2!

5 (
k51

K

c2,k (
j 150

L2

(
j 250

L2

wk, j 1

(2) bj 1

(2)~m1!wk, j 2

(2) bj 2

(2)~m2!,

~25!

and the following cross-term represents second-order
teractions between fast and slow dynamics:
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k2,f S~m1 ,m2!5
1

2 (
k51

K

c2,k

3 (
j 150

L1

(
j 250

L2

@wk, j 1

(1) bj 1

(1)~m1!wk, j 2

(2) bj 2

(2)~m2!

1wk, j 1

(1) bj 1

(1)~m2!wk, j 2

(2) bj 2

(2)~m1!#. ~26!

The second-order kernel is the summation of the e
lier three components. Similar decompositions apply
the higher order kernels as well. It is evident that there
a wealth of information in these kernel components t
cannot be retrieved with any other existing method.

A critical practical issue for the successful applicati
of the LVN-2 is the proper selection of its structur

FIGURE 2. First simulated nonlinear system.
parameters, i.e., the size of the Laguerre filter ba
@number of Laguerre functions~LFs! L1 and L2 #, the
number K of hidden units, and the degreeQ of the
polynomial activation functions. This selection can
performed by successive trials in ascending order~i.e.,
moving from lower to higher numbers! using a minimum
description length~MDL ! criterion for the mean-squar
error ~MSE! of the output prediction achieved by th
model.9 Specifically, we commence the LVN-2 trainin
with structural parameter values:L15L251, K51, Q
51 and compute the output MSE value for the train
LVN-2 model @i.e., the sum of allJ(n) in the output data
record#. Then the structural parameters are incremen
sequentially~starting with L1 and L2 concurrently, and
continuing with K and Q! until the MDL criterion is
met.

ILLUSTRATIVE EXAMPLES

The performance of the proposed model/network w
evaluated initially with three simulated nonlinear sy
tems. The first system is shown in Fig. 2, whereL1 and
L2 are linear filters characterized by the following im
pulse response functions:

l 1~m!5b0
(1)~m!12b1

(1)~m!1b2
(1)~m!, ~27!

l 2~m!5b0
(2)~m!2b1

(2)~m!12b2
(2)~m!, ~28!
FIGURE 3. Equivalent LVN for the first simulated system.
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277Modeling of Systems with Fast and Slow Dynamics
composed of linear combinations of the first thr
discrete-time Laguerre functions,b0

( i )(m),b1
( i )(m),

b2
( i )(m) ( i 51,2) with distinct Laguerre parameter

a150.2 anda250.8. The static polynomial nonlinearit
N is given by

y~n!5n1~n!1n2~n!1n1
2~n!2n2

2~n!1n1~n!n2~n!,
~29!

wheren1 and n2 are the outputs ofL1 and L2 , respec-
tively.

The first and second-order Volterra kernels of the s
tem are

k1~m!5 l 1~m!1 l 2~m!, ~30!

k2~m1 ,m2!5 l 1~m1!l 1~m2!2 l 2~m1!l 2~m2!

1 1
2 @ l 1~m1!l 2~m2!1 l 1~m2!l 2~m1!#.

~31!

It is evident from these expressions that the two k
nels contain fast and slow components that correspon
the two distinct Laguerre parameters.

FIGURE 4. The learning curves for the two Laguerre param-
eters for the first simulated system „exact values are a1
Ä0.2, a2Ä0.8….

TABLE 1. LVN and LVN-2 model performance; noise-free
output.

a1 a2

Prediction
NMSE

(%)

Kernel NMSEs

k1(m)
(%)

k2(m1 ,m2)
(%)

LVN-2 0.200 0.809 0.43 0.18 0.13
LVN 0.528 ¯ 14.28 10 14.67
This system is simulated for a Gaussian white no
~GWN! stimulus of unit variance and a length of 102
points. Following the ascending-order search proced
described earlier, we determine that three LFs in e
filter bank (L15L252) and three hidden units (K53)
with distinct second-degree polynomial activation fun
tions (Q52) are adequate to model the system. This w
theoretically anticipated because this system has
equivalent network model shown in Fig. 3. At least thr
hidden units are needed to express the output in term
the linear filter outputs, due to the presence of all p
sible first and second-order terms and cross-terms in
~29!. Note that the selection of the parameter values
the equivalent LVN-2 is not unique and that only one
the possible selections is shown in Fig. 3, correspond

FIGURE 5. Estimated first-order kernel for the first simulated
system and its slow Õfast components.

FIGURE 6. Estimated second-order kernel for the first simu-
lated system „a…, and its three components: „b… fast compo-
nent, „c… slow component, and „d… cross component.
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278 G. D. MITSIS and V. Z. MARMARELIS
to the case when the model output can be decompose
terms of the hidden unit outputs as

y~n!5u1~n!1 1
2 u1

2~n!1 1
2 u2

2~n!1u3~n!2 3
2 u3

2~n!,
~32!

where the hidden unit outputs are related to the lin
filter outputs of Fig. 2 asu15n1 ,u25n11n2 ,u35n2 .

The training of the 27 parameters of this netwo
model is performed using the iterative relations~7!–~9!
and ~16!. The learning curves for the two Laguerre p
rameters are shown in Fig. 4. The parameters conve
to their correct values in the noise-free case after aro
1500 iterations~Table 1!, although they were both ini
tialized at 0.5.

In the noise-free case, the estimated first-order ke
is shown in Fig. 5, along with the separate slow and f
components. All are almost identical to their true cou
terparts~see Table 1!. The estimated second-order kern
is shown in Fig. 6 along with the separate slow, fast a
cross-term~slow-fast! components~all are also almost
identical to their true counterparts!.

The normalized mean square error~NMSE! of the
output prediction achieved by the model~defined as the
sum of the squares of the errors between the mo

FIGURE 7. Estimated Volterra kernels for the first system,
with noisy output „SNRÄ0 dB …: „a… first-order kernel and „b…
second-order kernel.

TABLE 2. LVN-2 and cross-correlation method results for
noisy output „SNRÄ0 dB ….

a1 a2

Prediction
NMSE

(%)

Kernel NMSEs

k1(m)
(%)

k2(m1 ,m2)
(%)

LVN-2 0.165 0.811 53.78 7.69 4.10
Cross-correlation ¯ ¯ 86.38 421 1919
n

e

l

l

prediction and the true output over the sum of t
squares of the true output! is on the order of 1023 for the
noise-free case. The NMSE is therefore very low a
demonstrates the excellent performance of the mode
procedure. Another check of the model accuracy can
performed by the NMSEs of the obtained kernel es
mates, which are given in Table 1.

The usefulness of employing two filter banks in mo
eling systems with fast and slow dynamics can be de
onstrated by comparing the performance of the propo
model with that of a LVN with one filter bank having th
same complexity~i.e., six LFs, followed by three hidden
units with second-degree polynomial activation fun
tions! to model the system. The results are shown

FIGURE 8. Estimated Volterra kernels using the conventional
cross correlation technique for the first system, with noisy
output „SNRÄ0 dB …: „a… first-order kernel and „b… second-
order kernel.

FIGURE 9. Estimated Volterra kernels for the first system
using a one filter-bank LVN, noise-free output: „a… first-order
kernel and „b… second-order kernel.
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279Modeling of Systems with Fast and Slow Dynamics
Table 1 and Fig. 9 and demonstrate the utility of t
proposed method. In order to achieve comparable per
mance ~prediction NMSE of under 1%! with a single
filter bank, we have to increase the number of LFs to
least 12, i.e., increase the model complexity considera
by doubling the number of free parameters.

In order to examine the effect of noise on the perf
mance of the model, we add independent GWN to
system output for a signal-to-noise ratio~SNR! equal to
0 dB ~i.e., the noise variance equals the mean-squ
value of the noise-free output!. The resultinga learning
curves are shown in Fig. 4 in dotted lines. Converge
occurs in about 600 iterations~faster than in the noise
free case! and the estimates ofa1 , a2 are not affected
much, as shown in Table 2. The corresponding NM
value for the model prediction is 53.78%. Since the SN
is equal to 0 dB, the ideal NMSE level should be clo
to 50%, when the data record tends to an infinite len
~since the output mean has a small value!. The estimated
first- and second-order kernels in the noisy case
shown in Fig. 7 and corroborate the previous conclusi
especially when compared to the kernels obtained
the conventional cross-correlation technique,4 shown in
Fig. 8.

The second system has the same architecture sh
in Fig. 2, but with different component definitions
Namely, the linear filter impulse responses are not lin
combinations of LFs as before and are given by

l 1~m!5expS 2
m

3 D sinS pm

5 D , ~33!

l 2~m!5expS 2
m

20D2expS 2
m

10D . ~34!

The nonlinearityN is of fourth-order

TABLE 3. LVN-2 and LVN model performance for the second
simulated system; noise-free output.

a1 a2

Prediction
NMSE

(%)

Kernel NMSEs

k1(m)
(%)

k2(m1 ,m2)
(%)

LVN-2 0.056 0.767 0.17 0.10 0.09
LVN 0.443 ¯ 0.79 0.62 0.96
-

n

z1~n!5n1~n!12n1~n!14n1
2~n!24n2

2~n!

14n1~n!n2~n!1 1
3 n1

3~n!1 1
2 n2

3~n!1 3
4 n1

4~n!

1 1
2 n2

4~n!. ~35!

As indicated at the end of the Methodology sectio
we employ an ascending-order search procedure
which the structural parameters of the network/model
selected~i.e., the number of LFs in the filter banks, th
number of hidden units, and the degree of the activat
functions! using the minimum description length crite
rion ~MDL ! based on the mean-square error of the out
prediction to terminate the search procedure. In gene
the selection of these structural parameters cannot
proven to be unique but a parsimonious model can
obtained using this procedure.

A LVN-2 model with seven LFs in each filter-ban
and four hidden units with fourth-degree polynomial a
tivation functions was found to be sufficient~a total of
75 network parameters!. The results for a GWN input of
4096 data points are given in Table 3 and demonst
the excellent performance of the method for this hig
order system. The achieved separation of the fast
slow components corresponds to that of the true syst
Table 3 also shows the results for a single filter-ba
LVN model of the same complexity~i.e., 14 LFs and
four hidden units with fourth-degree activation fun
tions!.

The effect of output-additive noise on the perfo
mance of the model was examined for this system
adding 20 different independent GWN signals to the o
put, for a SNR of 0 dB. The resulting values of th
Laguerre parameters and the NMSEs of the output p
diction and the estimated kernels~mean values and stan
dard deviations! are given in Table 4. The robustness
the method is evident since the ideal prediction NMSE
close to 50% and the kernel NMSEs are low compa
to the variance of the noisy output data.

Finally, a third system of different structure was stu
ied, described by the following system of differenti
equations:

dy~ t !

dt
5@2b01c1z1~ t !2c2z2~ t !#y~ t !1y0 , ~36!
TABLE 4. LVN-2 model performance for the second simulated system for noisy output
„SNRÄ0 dB … using 20 independent runs.

a1 a2 Prediction NMSE

Kernel NMSEs

k1(m) k2(m1 ,m2)

0.07360.031 0.71960.039 46.1262.53% 7.0563.69% 6.0363.94%
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dz1~ t !

dt
52b1z1~ t !1x~ t !, ~37!

dz2~ t !

dt
52b2z2~ t !1x~ t !, ~38!

wherez1(t), z2(t) are state variables and their produc
with the outputy(t) in Eq. ~36! constitute the nonlinear
ity of this system, which gives rise to an infinite ord
equivalent Volterra model. The values of the equat
parameters are as follows:b050.5, b150.2, b250.02,
c150.3 andc250.1. The contribution of themth order
Volterra term is proportional to themth powers ofP1/2c1

and P1/2c2 , whereP is the input power level. Since th
magnitudes ofc1 , c2 are both smaller than one, a trun
cated Volterra model can be used to approximate
system. For the earlier values ofc1 , c2 , it was found
that a fourth-order LVN-2 model was sufficient to mod
the system. The equivalent Volterra kernels for this s
tem can be analytically derived by using the generaliz
harmonic balance method.6 The resulting expressions fo
the zeroth and first-order kernels are

k05
y0

b0
, ~39!

k1~m!5
y0

b0
H c1

b12b0
@exp~2b0m!2exp~2b1m!#

2
c2

b22b0
@exp~2b0m!2exp~2b2m!#J .

~40!

The analytical forms of the higher-order kernels a
rather complex and are not given here in the interes
space. The fast component of the first-order kernel c
responds to the first exponential difference in Eq.~40!,
whereas the slow component corresponds to the sec
exponential difference. The system was simulated fo
GWN input with unity power level and length of 204
data points by numerical integration of Eqs.~36!–~38!,
for zero initial conditions. Following the propose
method for the selection of the model order, a LVN
with 5 LFs in each filter bank and three hidden un
with fourth-degree polynomial activation functions w
selected to model the system~a total of 45 free param
eters!. The obtained results for the noise-free and no
conditions are given in Table 5, demonstrating the exc
lent performance of the LVN-2 model for this system
well. It should be noted that the estimated zeroth or
kernel was equal to 1.996, very close to its true value
2, given by Eq.~39!.
d

CONCLUSIONS

The problem of effective modeling of nonlinear sy
tems with fast and slow dynamics was addressed in
paper, since the presence of multiple time scales in
system dynamics may give rise to serious challenges
the modeling task. The combination of Laguerre expa
sions with feedforward artificial neural networks in th
form of the recently introduced Laguerre–Volter
network1 has been shown to be an efficient way f
nonlinear system identification from short input-outp
records. By employing two different filter banks chara
terized by distinct Laguerre parameters alpha in the n
work, the fast and slow system dynamics can be mode
separately by the respective filter-bank. The two L
guerre parameters are estimated on the basis of the
along with the other model parameters, in a computati
ally efficient way that ensures that the different tim
scales of the system dynamics are assigned approp
alpha values. The effectiveness and robustness of
method in the presence of severe output noise, as we
the advantage of using two filter banks instead of o
were demonstrated by three simulated examples. T
raises the possibility of approximating systems that
viewed as having infinite memory with LVN-2 models
whereby one alpha is close to unity, although conv
gence cannot be guaranteed in such cases and long
records may be required. The application of this me
odology to the modeling of dynamic cerebral autoreg
lation is presented in the companion paper~submitted as
Part II!.
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