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Abstract—Effective modeling of nonlinear dynamic systems ter banks are used with distinct trainable parameters “al-
can b% ac:)fi_e\_/eld by elmplct)yinglzj( L_agtt:]errfe expafnr:aiorll_s and feed-pha” (corresponding to the slow and fast dynamics of the
orwarda artriClal neural networks In the torm o e Laguerre— . .

Volterra network(LVN). This paper presents a differentgformu- syste_rr). It is shown that this mgthod addressgs the afore-
lation of the LVN that can be employed to model nonlinear Mentioned problem in a practical and effective manner.
systems displaying complex dynamics effectively. This is Previous modeling studies of nonlinear \olterra sys-
achieved by using two different filter banks, instead of one as tems demonstrated the practical advantages of using La-

selecting their structural parameters in an appropriate way. Re- : : .
sults from simulated systems show that this method can yield achieve model compactness and estimation accﬁracy.

accurate nonlinear models of Volterra systems, even when con- 1ne resu_lting Laguerre expansion _t§Chniql|1-ET) can
siderable noise is present, separating at the same time the fasbe combined with feedforward artificial neural networks

from the slow components of these systems effectively. utilizing polynomial activation functions in the form of
© 2002 Biomedical Engineering Society. the Laguerre—\Volterra networkLVN). The latter re-
[DOI: 10.1114/1.1458591 ceives as its input vector the outputs of a Laguerre filter
bank fed by the input signal of the systérthe perfor-
Keywords—Nonlinear modeling, Volterra models, Artificial mance of the LET and LVN modeling methods has been
neural networks, Polynomial activation functions, Discrete-time Shown to be excellent as long as the Laguerre parameter
Laguerre functions. a is properly selected, since the latter determines the
required number of Laguerre functions for the kernel
INTRODUCTION expansion, i.e., determines the modeling parsimony and
efficiency. An adaptive estimation method has been re-
In the mathematical modeling of physiological sys- cently introduced for selecting the Laguerre parameter
tems, a practical problem arises when the dynamics of (0<a<1) using the actual stimulus-response datab-
the system cover vastly different time scalstow and mitted for publication.
fash, because the fast time scale requires a high sam- |t is critical to note that the Laguerre parameter
pling frequency and the slow time scale necessitates longdefines the time scale for which the Laguerre expansion
experimentation times. The combination of these two of the system kernels is most efficient in terms of con-
requirements leads to very large amounts of stimulus- vergence(i.e., yields satisfactory approximations with
response data and presents a serious challenge to théhe minimum number of Laguerre basis functiprighus,
efficacy of the estimation methods used for system iden- efficient use of the LET or LVN method requires a small
tification and modeling. This problem is further aggra- « (close to 0 for systems with fast dynamics or a large
vated by the presence of nonlinearities, since the latter o (close to } for systems with slow dynamics.
impose additional burdens of accuracy and sensitivity on  |n the case of systems with both fast and slow dy-
the estimation methods. namics, the choice of a single paramaiecannot lead to
The subject paper presents a novel methodology by an efficient representation of the system and may not
which this problem can be effectively resolved in the produce satisfactory results. Therefore, the use of two
nonlinear context. The methodology employs a variant of |aguerre filter banks characterized by two distinct La-
the recently introduced Laguerre—\olterra networks for guerre parameters holds the promise that the fast and
modeling nonlinear systemswhereby two Laguerre fil-  slow components of a system can be modeled separate-
ly and effectively. The proposed model representat-
Address correspondence to Professor V. Z. Marmarelis, OHE 500, ion also captures the possible nonlinear interactions be-
USC, Los Angeles, CA 90089-1451. Electronic mail: tween slow and fast dynamics in the form of cross-terms.
vzm@bmsrs.usc.edu The proposed methodology is presented in the next sec-
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FIGURE 1. The LVN with two Laguerre filter banks ~ {b{"} and {b{®} that preprocess the input ~ x(n). The hidden units in the
second layer have polynomial activation functions {f} and receive input from all Laguerre filters. The output y(n) is formed by
summation of the outputs of the hidden units {z,} and the output offset y,.

tion. lllustrative examples with synthetic data are given Laguerre functions and determines the convergence of
in the corresponding section. An application of this the Laguerre expansion for a given kernel function.
method to actual experimental data of cerebral hemody- Larger « values result in longer spread of significant
namics in humans is presented in a companion papervalues(slow dynamics

(submitted for publication as Part)ll The choice of the Laguerre parametegs, («,) for
the two filter banks is very important in order to achieve
METHODOLOGY an efficient model representation of the system under

examination. However, this choice has been made here-

The proposed architecture of the Laguerre—\olterra tofore by trial-and-error proceduré$:° We recently in-
network with two Laguerre filter bank$LVN-2) that troduced a computationally efficient method, whereby
preprocess the input is shown in Fig. 1. The two filter the Laguerre parameter is treated as a trainable parameter
banks are characterized by different Laguerre parametersof the Laguerre—\Volterra networksubmitted for publi-
(a1,a5) and may contain different numbers of Laguerre cation. This automates the procedure for the determina-
functions (filters). By assigning a small value ta, for tion of suitable Laguerre parameters, guided by the ac-
the first filter bank and a large value &g for the second  tual experimental data.
one, we can simultaneously model the fast and the slow The discrete-time Laguerre functions employed in the
components of a system separately. filter-banks are defined for thigh order a8

The asymptotically exponential structure of the La-
guerre functions makes them a good choice for modeling b®(m)
physiological systems, since the latter often exhibit as-
ymptotically exponential structure in their Volterra ker-
nels. However, one cannot rule out the possibility of , J j
system kernels that do not decay smoothly—a situation Zai(m_J)/z(l—ai)mZ (—1)k( k)(k
that will require either a large number of Laguerre func- k=0
tions or an alternatgmore suitablg filter bank. The
Laguerre parametett defines the relaxation rate of the i=1,2, (1)

)a?‘ku—ai)k;
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where aq,a, are the Laguerre parameters of the two
filter banks (both lying between 0 and)1The corre-
sponding Laguerre filter output is given by the discrete
convolution ofbj(')(m) with the input signalx(n):

vi(n)= 20 b (m)x(n—m); i=1,.2. 2)

The hidden units in the second layer have polynomial
(instead of the commonly used sigmoidalctivation
functions in order to make the network functionally
equivalent to a \Volterra model and reduce the required
number of hidden unit5The input of thekth hidden unit
is given by

2
uk(n)=21 20 W(kiv)jv](i)(n); k=1,2,...K 3)
i=1j=

and its corresponding output is

Q
zk(n):mz:‘,l CmikU(n);  k=1,2,..K. (4)

The output of the network is given by a nonweighted
summation of all the hidden-unit outputsince the poly-
nomial coefficients are trainablend a trainable offset

Yo-
K

y(n)=>, z(n)+yo.

k=1

©)

The training of all the network parameters is per-
formed using the backpropagation algorithm in an itera-
tive fashion® The amount by which a specific parameter
value is changed in each iteration is proportional to the
value of the partial derivative of the cost function with
respect to the specific parameter at that iteration. Defin-
ing the cost functionJ(n) as the squared errag(n)
between the desired outpd{n) and the network output
y(n) at each time instance:

J(n)= 3[d(n)—y(n)]? (6)
the iterative relations become
. ) aJ
(i), (r+1) —\,,(0),(r) _
w4 =wp . Yol =07
i i W( awklrji) r
=wih O+ yuLs(m fi(udm) vl ()], (7
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wherer denotes the iteration index ang,, v, vy, v are
fixed positive learning constants. Note tha? (n) is the
output error at theth iteration andf, (" is the derivative
of the polynomial activation function of thkth hidden
unit at therth iteration

Q
frO[u(n)]= 21 MG LU (n) 1™ %

m=

(11)

The total number of unknown parameters in the
LVN-2 model is equal to I(; +L,+2+Q)K+3. It is
important to note here that this number is linear with
respect to the orde® of the system, which makes this
approach more practical for higher-order systems com-
pared to other technique&.g., cross-correlation the
complexity of which depends on the system order
exponentially.

The difficulty in training the parametew based on
the above Eq(10) is evident, since the use of the back-
propagation algorithm requires computation of the partial
derivatives of eachz(')(n) with respect tow; . As can be
seen from Eq(1), bjd)(m) depends in a complex way on
a;, which makes this computation based on E)
rather excessive for all practical purposes.

However, this task becomes greatly simplified if we
employ the recursive relations for the computation of the
Laguerre filter-bank outputs. Specifically, the output
v{’(n) of the jth discrete-time Laguerre filter of thigh
filter-bank can be expressed as follows:

()=l (n=1)+ vy (n)]=v{2y(n—1),
(12)
where B;= a2
The initial expressior{for j=0) is slightly different:
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v(m=gr(n-1)+(1-g)Y(n). (13
These recursive relations are obtained from Zh&ans-
forms of the discrete-time Laguerre functidhs.

We can see that it is easier to tragih rather thang;
based on the iterative relatiofs2) and(13). This can be
done by differentiating Eq(12) with respect tog; :

aV}P(n)
IB;

==+ (n); ji=1..L; (19
with the following initial condition {;=0):

Bi
V1-6;

x(n). (15

Then, the iterative expression for the training @f
becomegfor j;>0):

K Q
B0+ O, S, ml el

Li
X2 W(ki,)j[VJ(:)(n_l)'i”VJ(:)_l(n)]J . (16

r

In order to assist the reader in making the formal
connection between the LVN-2 and the Volterra models,
let us now consider the Volterra model forQth order
nonlinear time-invariant discrete-time system

Q
ym=2> | X .2 ka(my,...m)x(n—my)...
n=0 | m my,
x(n—mn)}, (17
wherek,(my,...,my,) is the nth order Volterra kernel of

the system. It can be shown that this representation is
equivalent with the LVN-2 representation having activa-
tion functions of Qth degree in the hidden units. The
\olterra kernels corresponding to the LVN-2 can be ex-
pressed in terms of the network parameters in the fol-
lowing way:

Ko=Yo, (18

U

(19

K
kl(ml)zz 2

(1 p(H
wy b (m,),
i=1 k=1 ki (my)

Cik,
]=0
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2 2 K Li,
kz(ml,mz)=2 E E Cz,k,E
i1=11i,=1k=1 j1=0
Li2 . . . .
X 2, Wb by (mowE o (ms),
(20)

2 2
kn(ml,...,mn)z_E E

i1=1 in=1
K Li,

X 2 Cn,k,E
k=1 j1=0

(i1)
VVKjl“

Lin
x 2

(in) (il) (in)
2, .wk‘jnbjl (ml)...bjn (my).

21

From Eg.(19) we can see that the first-order fast (
=1) and slow (=2) components of a nonlinear system
can be expressed in terms of the network parameters
separately:

K Ly
kl,f<m1>=k§1 cl,kgo wib(M(m,), (22)

K Ly
klys(m1)=kzl Cl'k;o Wb (m,). (23)

For the higher order kernels, in addition to separate
slow and fast components, there exist cross-terms that
represent nonlinear interactions between slow and fast
dynamics. For example, in the case of the second-order
kernel the following terms correspond to the fast and

slow components separately:

Ko r¢(Mg,my)

Ly
S, w2 ).

(249

K Ly
:2 Cz,kAE )
k=1 j1=0]

Ko sdmq,my)

L Ly

Cz,ijO 120 W(k?j)lbj(i)(ml)W(k,zj)zbj(s)(mz)y
1~ 2~

K
=2
k=1

(29

and the following cross-term represents second-order in-
teractions between fast and slow dynamics:
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FIGURE 2. First simulated nonlinear system.
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(26)

The second-order kernel is the summation of the ear-
lier three components. Similar decompositions apply for
the higher order kernels as well. It is evident that there is
a wealth of information in these kernel components that
cannot be retrieved with any other existing method.

A critical practical issue for the successful application
of the LVN-2 is the proper selection of its structural

Z. MARMARELIS

parameters, i.e., the size of the Laguerre filter banks
[number of Laguerre functionfLFs) L; andL, ], the
number K of hidden units, and the degre®@ of the
polynomial activation functions. This selection can be
performed by successive trials in ascending order.,
moving from lower to higher numbersising a minimum
description length(MDL) criterion for the mean-square
error (MSE) of the output prediction achieved by the
model® Specifically, we commence the LVN-2 training
with structural parameter value&;=L,=1, K=1, Q

=1 and compute the output MSE value for the trained
LVN-2 model[i.e., the sum of all(n) in the output data
record. Then the structural parameters are incremented
sequentially(starting withL,; and L, concurrently, and
continuing with K and Q) until the MDL criterion is
met.

ILLUSTRATIVE EXAMPLES

The performance of the proposed model/network was
evaluated initially with three simulated nonlinear sys-
tems. The first system is shown in Fig. 2, whérgand
L, are linear filters characterized by the following im-
pulse response functions:

1.(m)=b{P(m) + 2bM(m) + b (m), (27)
1,(m)=b{@(m)—b{(m)+2b?(m), (28)

x(n)
|
(()1) b (Il) bl7 0(2) b (IZ) 2(2)
ve (1) v (n) V) (n) Vo (n) Vi (n) Vi (n)
2 1 1 -1
2 -1
1 1 1 2 1 2

@)5(\) /0.5(.)2 6-1.5(.)2

Y ) Y
y(n)

FIGURE 3. Equivalent LVN for the first simulated system.
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FIGURE 4. The learning curves for the two Laguerre param-
eters for the first simulated system (exact values are a;
=0.2, a,=0.8).

composed of linear combinations of the first three
discrete-time Laguerre functions,bg)(m),b(li)(m),
b{)(m) (i=1,2) with distinct Laguerre parameters:
a1=0.2 anda,=0.8. The static polynomial nonlinearity
N is given by

y(n)=wv1(n)+ v5(n)+ v7(n)— v3(N)+ v1(N) vy(n),
(29)

where v, and v, are the outputs of, andL,, respec-
tively.

The first and second-order Volterra kernels of the sys-

tem are
Ki(m)=11(m)+1,(m), (30
Ko(my,my) =11(my)l1(my) —1,(myg)l5(my)
+ 3[1(my)lo(my) +15(my)l(my)].
(31)

It is evident from these expressions that the two ker-
nels contain fast and slow components that correspond to

the two distinct Laguerre parameters.

TABLE 1. LVN and LVN-2 model performance; noise-free

output.
o Kernel NMSEs
Prediction
NMSE kq(m) ky(my,my)
ay @, (%) (%) (%)
LVN-2  0.200 0.809 0.43 0.18 0.13
LVN 0.528 14.28 10 14.67
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FIGURE 5. Estimated first-order kernel for the first simulated
system and its slow /fast components.

This system is simulated for a Gaussian white noise
(GWN) stimulus of unit variance and a length of 1024
points. Following the ascending-order search procedure
described earlier, we determine that three LFs in each
filter bank L;=L,=2) and three hidden unitX(= 3)
with distinct second-degree polynomial activation func-
tions (Q=2) are adequate to model the system. This was
theoretically anticipated because this system has the
equivalent network model shown in Fig. 3. At least three
hidden units are needed to express the output in terms of
the linear filter outputs, due to the presence of all pos-
sible first and second-order terms and cross-terms in Eq.
(29). Note that the selection of the parameter values in
the equivalent LVN-2 is not unique and that only one of
the possible selections is shown in Fig. 3, corresponding

50

m1 100 o m2

mt 1000

FIGURE 6. Estimated second-order kernel for the first simu-
lated system (a), and its three components: (b) fast compo-
nent, (c) slow component, and (d) cross component.
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TABLE 2. LVN-2 and cross-correlation method results for
noisy output (SNR=0dB).

Kernel NMSEs

Predicton

NMSE  ki(m) ky(my,m5y)
@ @, (%) (%) (%)
LVN-2 0.165 0.811 53.78 7.69 4.10
Cross-correlation -+ 86.38 421 1919

to the case when the model output can be decomposed in

terms of the hidden unit outputs as

y(n)=uy(n)+ 3u?(n)+ sud(n)+us(n)— 3u3(n),
(32)

(@ (b}

— True
25¢ —---Cross corelation

k1(m1,m2)

where the hidden unit outputs are related to the linear FIGURE 8. Estimated Volterra kernels using the conventional

filter outputs of Fig. 2 asl;=vq,U,=v1+ vy, Uz=vs.

The training of the 27 parameters of this network/

model is performed using the iterative relatiof®—(9)

and (16). The learning curves for the two Laguerre pa-

cross correlation technique for the first system, with noisy
output (SNR=0dB): (a) first-order kernel and (b) second-

order kernel.

rameters are shown in Fig. 4. The parameters convergeprediction and the true output over the sum of the
to their correct values in the noise-free case after aroundsquares of the true outpus on the order of 10° for the

1500 iterations(Table 1, although they were both ini-

tialized at 0.5.

noise-free case. The NMSE is therefore very low and
demonstrates the excellent performance of the modeling

In the noise-free case, the estimated first-order kernel procedure. Another check of the model accuracy can be
is shown in Fig. 5, along with the separate slow and fast performed by the NMSEs of the obtained kernel esti-
components. All are almost identical to their true coun- mates, which are given in Table 1.

terparts(see Table L The estimated second-order kernel

The usefulness of employing two filter banks in mod-

is shown in Fig. 6 along with the separate slow, fast and eling systems with fast and slow dynamics can be dem-

cross-term(slow-fas) components(all are also almost

identical to their true counterpayts

The normalized mean square errcdMSE) of the
output prediction achieved by the modelefined as the

onstrated by comparing the performance of the proposed
model with that of a LVN with one filter bank having the
same complexityi.e., six LFs, followed by three hidden
units with second-degree polynomial activation func-

sum of the squares of the errors between the modeltions) to model the system. The results are shown in

)] )

— True
— - SNR=0 dB
251 b

80

Pl

40

20

0 50 100 m 0 m2
m

50

FIGURE 7. Estimated Volterra kernels for the first system,
with noisy output (SNR=O0 dB): (a) first-order kernel and (b)
second-order kernel.
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FIGURE 9. Estimated Volterra kernels for the first system
using a one filter-bank LVN, noise-free output: (a) first-order
kernel and (b) second-order kernel.



Modeling of Systems with Fast and Slow Dynamics 279

TABLE 3. LVN-2 and LVN model performance for the second _ 2 2
zy(n)=wvy(n)+2v1(n)+4v7(n)—4v5(n
simulated system; noise-free output. 1(n) 1(n) 1(n) 1( ) 2( )
3 3 4
o Kernel NMSEs +4vy(n)vy(n)+ 3v3(n)+ 3v5(n)+ Fv3(n)
Prediction
NMSE ki(m)  ky(my,my) 1.4

N O %) * 2. @9

LVN-2  0.056 0.767 0.17 0.10 0.09
LVN 0443 - 0.79 0.62 0.96 As indicated at the end of the Methodology section,

we employ an ascending-order search procedure by
which the structural parameters of the network/model are

Table 1 and Fig. 9 and demonstrate the utility of the selected(i.e., the number of LFs in the filter banks, the
proposed method. In order to achieve comparable perfor- number of hidden units, and the degree of the activation
mance (prediction NMSE of under 1%with a single functiong using the minimum description length crite-
filter bank, we have to increase the number of LFs to at rion (MDL) based on the mean-square error of the output
least 12, i.e., increase the model complexity considerably prediction to terminate the search procedure. In general,
by doubling the number of free parameters. the selection of these structural parameters cannot be
In order to examine the effect of noise on the perfor- proven to be unique but a parsimonious model can be
mance of the model, we add independent GWN to the obtained using this procedure.
system output for a signal-to-noise rati8NR) equal to A LVN-2 model with seven LFs in each filter-bank
0 dB (i.e., the noise variance equals the mean_squareand four hidden units with fourth-degree polynomial ac-
value of the noise-free outputThe resultinge learning tivation functions was found to be sufficie(a total of
curves are shown in Fig. 4 in dotted lines. Convergence 75 network parametersThe results for a GWN input of
occurs in about 600 iteration$aster than in the noise- 4096 data points are given in Table 3 and demonstrate
free casg and the estimates of,, a, are not affected the excellent performance of the method for this high-
much, as shown in Table 2. The corresponding NMSE order system. The achieved separation of the fast and
value for the model prediction is 53.78%. Since the SNR slow components corresponds to that of the true system.
is equal to 0 dB, the ideal NMSE level should be close Table 3 also shows the results for a single filter-bank
to 50%, when the data record tends to an infinite length LYN model of the same complexityi.e., 14 LFs and
(since the output mean has a small valihe estimated four hidden units with fourth-degree activation func-
first- and second-order kernels in the noisy case aretions).
shown in Fig. 7 and corroborate the previous conclusion, The effect of output-additive noise on the perfor-
especially when compared to the kernels obtained via mance of the model was examined for this system by
the conventional cross-correlation techniqushown in  adding 20 different independent GWN signals to the out-
Fig. 8. put, for a SNR of O dB. The resulting values of the
The second system has the same architecture showrl-aguerre parameters and the NMSEs of the output pre-
in Fig. 2, but with different component definitions. diction and the estimated kerndlsiean values and stan-
Namely, the linear filter impulse responses are not linear dard deviationsare given in Table 4. The robustness of
combinations of LFs as before and are given by the method is evident since the ideal prediction NMSE is
close to 50% and the kernel NMSEs are low compared
to the variance of the noisy output data.

Il(m)zex;{ — g)sin %m , (33 Finally, a third system of different structure was stud-
ied, described by the following system of differential
equations:

m m
[,(m) =exp( — %) —exp( — f)) . (34
dy(t) b
The nonlinearityN is of fourth-order gt L7 BotCaza()=Czx(D]y(D) +Yo, (36)

TABLE 4. LVN-2 model performance for the second simulated system for noisy output
(SNR=0 dB) using 20 independent runs.

Kernel NMSEs

a; ay Prediction NMSE ki(m) ko(my,m,)

0.073=0.031 0.719%0.039 46.12+2.53% 7.05+3.69% 6.03+3.94%
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dz(t
%:_blzl(t)"—x(t)r (37)
%Z_bzzz(t)"‘x(t), (39

wherez,(t), z,(t) are state variables and their products
with the outputy(t) in Eq. (36) constitute the nonlinear-
ity of this system, which gives rise to an infinite order
equivalent Volterra model. The values of the equation
parameters are as follows,=0.5, b;=0.2, b,=0.02,
¢;=0.3 andc,=0.1. The contribution of thenth order
\olterra term is proportional to theith powers ofPY%c,
and P¥%c,, whereP is the input power level. Since the
magnitudes oft,, c, are both smaller than one, a trun-

cated \Volterra model can be used to approximate the

system. For the earlier values of, c,, it was found
that a fourth-order LVN-2 model was sufficient to model
the system. The equivalent Volterra kernels for this sys-
tem can be analytically derived by using the generalized
harmonic balance methddThe resulting expressions for
the zeroth and first-order kernels are

y

_J0
I<o—bo. (39
c
k)= 5 | p-[xp( ~bom) ~ exp(~bym)]
C2
- bz_bo[exp(—bom)—exrx—bzm)] .
(40)
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TABLE 5. LVN-2 model performance for the third simulated

system.
Kernel
Prediction NMSEs
NMSE ki(m)
ay ay (%) (%)
Noise-free output 0.505 0.903 0.28 0.10
Noisy output (SNR=0dB) 0.366 0.853 47.49 4.13

CONCLUSIONS

The problem of effective modeling of nonlinear sys-
tems with fast and slow dynamics was addressed in this
paper, since the presence of multiple time scales in the
system dynamics may give rise to serious challenges in
the modeling task. The combination of Laguerre expan-
sions with feedforward artificial neural networks in the
form of the recently introduced Laguerre—\olterra
network has been shown to be an efficient way for
nonlinear system identification from short input-output
records. By employing two different filter banks charac-
terized by distinct Laguerre parameters alpha in the net-

work, the fast and slow system dynamics can be modeled

separately by the respective filter-bank. The two La-
guerre parameters are estimated on the basis of the data,
along with the other model parameters, in a computation-
ally efficient way that ensures that the different time
scales of the system dynamics are assigned appropriate
alpha values. The effectiveness and robustness of the
method in the presence of severe output noise, as well as
the advantage of using two filter banks instead of one,

were demonstrated by three simulated examples. This

raises the possibility of approximating systems that are
viewed as having infinite memory with LVN-2 models,

whereby one alpha is close to unity, although conver-

The analytical forms of the higher-order kernels are gence cannot be guaranteed in such cases and long data
rather complex and are not given here in the interest of records may be required. The application of this meth-
space. The fast component of the first-order kernel cor- 0dology to the modeling of dynamic cerebral autoregu-
responds to the first exponential difference in E40), lation is presented in the companion paggsbmitted as
whereas the slow component corresponds to the secondPart I)).
exponential difference. The system was simulated for a
GWN input with unity power level and length of 2048
data points by numerical integration of Eq86)—(39),
for zero initial conditions. Following the proposed This work was supported by Grant No. RR-01861
method for the selection of the model order, a LVN-2 awarded to the Biomedical Simulations Resource at the
with 5 LFs in each filter bank and three hidden units University of Southern California from the National Cen-
with fourth-degree polynomial activation functions was ter for Research Resources of the National Institutes of
selected to model the systefa total of 45 free param-  Health.
eterg. The obtained results for the noise-free and noisy
conditions are given in Table 5, demonstrating the excel-
lent performance of the LVN-2 model for this system as
well. It should be noted that the estimated zeroth order
kernel was equal to 1.996, very close to its true value of pjataris, K., T. W. Berger, and V. Z. Marmarelis. A novel
2, given by Eq.(39). network for nonlinear modeling of neural systems with arbi-
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