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Abstract

This paper address the issue of nonlinear model estimation for neural systems with arbitrary point-process inputs using a novel network
that is composed of a pre-processing stage of a Laguerre filter bank followed by a single hidden layer with polynomial activation functions.
The nonlinear modeling problem for neural systems has been attempted thus far only with Poisson point-process inputs and using cross-
correlation methods to estimate low-order nonlinearities. The specific contribution of this paper is the use of the described novel network to
achieve practical estimation of the requisite nonlinear model in the case of arbitrary (i.e. non-Poisson) point-process inputs and high-order
nonlinearities. The success of this approach has critical implications for the study of neuronal ensembles, for which nonlinear modeling has
been hindered by the requirement of Poisson process inputs and by the presence of high-order nonlinearities. The proposed methodology
yields accurate models even for short input–output data records and in the presence of considerable noise. The efficacy of this approach is
demonstrated with computer-simulated examples having continuous output and point-process output, and with real data from the dentate
gyrus of the hippocampus.q 2000 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The task of nonlinear modeling of physiological systems
is very challenging because of the immense variety of non-
linearities in physiological systems and the diverse require-
ments of different applications. This task becomes more
demanding when we lack information about the internal
workings of the system and we seek to obtain “empirical”
mathematical models on the basis of experimental input–
output data (Marmarelis & Marmarelis, 1978; Marmarelis,
1987, 1989, 1994).

In this context of identification of nonlinear physiological
systems, the theory of functional expansions (Volterra or
Wiener series) (Schetzen, 1980) and Gaussian white noise
(GWN) test inputs have been widely used (Barrett, 1963;
Marmarelis & Marmarelis, 1978; Volterra, 1930). In this
context, the most commonly used method to date is based
on cross-correlation and requires input whiteness—a con-
dition met by the Poisson process for point-process inputs
(Berger, Robinson, Port & Sclabassi, 1987; Krausz, 1975).
However in many actual applications of the Volterra–
Wiener approach, the prevailing conditions are less than

ideal. Critical among them are: (a) deviations from input
whiteness that may be caused by experimental necessity
or inadvertent stimulus distortion; (b) extraneous noise
that contaminates the experimental data; (c) occasional
presence of non-stationarities that make it imperative to
obtain accurate results from short experimental records;
and (d) long system memory requirements that create a
heavy computational burden when the conventional cross-
correlation method is used. The traditional cross-correlation
technique (CCT) (Lee & Schetzen, 1965) and its many
variants over the last 30 years require whiteness of the
system input and yield a set of kernels that correspond to
the orthogonal functional expansion associated with the
specific input, which are distinct from the Volterra kernels
and depend on the input characteristics, e.g. for GWN inputs
we obtain the Wiener kernels.

Therefore new techniques are needed that address these
restrictive requirements. For instance, the Laguerre expan-
sion technique (LET) has been recently introduced to
obviate the need for input whiteness and reduce the compu-
tational burden for long memory systems, although it may
still impose certain restrictions (e.g. sufficiently broadband
inputs and complete estimated models) (Marmarelis, 1993).
In addition, LET is robust in the presence of noise and can
yield accurate estimates from short experimental data
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records, avoiding the pitfalls of non-stationarity in the
experimental preparation. In spite of its many advantages,
the application of LET is still limited to low-order systems
(up to third) because of the computational burden associated
with the dimensionality of high-order kernels. This has
prompted the introduction of the principal dynamic mode
methodology that seeks to make practical the estimation of
high-order nonlinearities (Marmarelis & Orme, 1993).

If the input signal is non-white, kernel estimation must be
based on minimization of the output-prediction mean-
square error (MSE), whereby the kernel estimation task is
converted into a parameter estimation problem via least-
squares fitting. Since the unknown discrete kernel values
enter linearly in the input–output equation (i.e. Volterra
model), their estimation is possible through linear regres-
sion in one of its many implementations (e.g. ordinary or
generalized least-squares, instrumental variables, singular-
value decomposition, QR decomposition, etc.) most suitable
for a given application. The use of Artificial Neural Nets
(ANN) and adaptive estimation techniques (used for their
training) also have been proposed for the same purpose
(Chen, Billings & Grant, 1990; Marmarelis & Zhao, 1997;
Wray & Green, 1994).

The proposed methodology is a hybrid of Laguerre
expansions and ANN adaptive estimation, as detailed
below. It is the performance of this network (termed herein
the Laguerre–Volterra network “LVN”) with respect to
nonlinear modeling of neural systems that is the subject of
this paper. The main objective is to show that the LVN can
practically estimate high-order nonlinear models of neural
systems with arbitrary (i.e. non-Poisson) point-process
inputs. In terms of modeling performance, the proposed
LVN combines the strengths of the traditional methods:
compactness of representation from the Laguerre expan-
sion, affinity with Volterra modeling for biological interpre-
tation, and ease of estimation of high-order models with
arbitrary inputs using the efficient adaptive estimation algo-
rithms for training multi-layer perceptrons.

2. Methodology

For a causal system, the relation between the known
input-output signals can be seen as a mapping of the past
and present values of the input signal onto the present value
of the output signal. The use of a mathematical functional
can be used to represent this mapping:

y�t� � F�x�t�; t # t� �1�
wherex is the input signal,y the output signal andF the
functional representing the system. When the system is
time-invariant (stationary), the functionalF remains
unchanged through time. The modeling goal is to find an
explicit mathematical description of the system functional
F.

In the Volterra approach (Volterra, 1930), a functional

expansion of the system functionalF is used for this
purpose. For discretized input–output data, the general
model for causal, stable, nonlinear, time-invariant systems
is given by the Volterra series expansion:
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m�0

k1�m�x�n 2 m�
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wheren is the discrete time,x(n) the input data sequence,
y(n) the output data sequence and {ki} are the Volterra
kernels to be estimated from the known input–output data.
For systems with finite memoryM, the input–output rela-
tion can be viewed as a nonlinear mapping of the input
epoch {x�n�; x�n 2 1�;…; x�n 2 M�} on to the output value
y(n), for every value of discrete timen. Thus, the Volterra
model is constituted by a hierarchy of functional terms
mapping an epoch�n; n 2 M� of the input signal onto the
output present valuey(n).

The Volterra kernels {ki} describe the nonlinear
dynamics of the system (i.e. fully characterize the nonlinear
input–output mapping) at each order of nonlinearity and
constitute a complete and canonical representation of any
stable system whose output changes infinitesimally in
response to an infinitesimal change of the input signal
(Rugh, 1981). For a uniformly bounded input, the output
remains uniformly bounded if and only if the system kernels
are absolute-summable and form a convergent series
(Volterra class of systems). The kernels are symmetric
(i.e. invariant to any permutation of their arguments) and
for causal systems are zero for negative values of their
arguments (Volterra, 1930; Wiener, 1958).

Estimation of the Volterra kernels {ki} can be achieved
by various methods, including the use of ANN training
(Wray and Green, 1994), and the equivalence between
Volterra models and feedforward ANN has been shown
(Marmarelis and Zhao, 1997). Since the ANN is trained
with the available input-output data, the training task does
not place any specific requirements on the input, although an
ergodic and spectrally rich input is expected to yield better
training results (i.e. capable of generalization).

As indicated above, the proposed methodology employs
an ANN with a single hidden layer and polynomial activa-
tion functions, receiving as input the outputs of a Laguerre
filter bank that pre-processes the stimulus data. This model,
termed the Laguerre–Volterra network (LVN), is a valid
representation of Volterra systems, as originally suggested
by Wiener (1958) and elaborated by Watanabe and Stark
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(1975) and Schetzen (1980). This is evident when we
consider kernel expansions on the complete orthonormal
Laguerre basis {bj�m�} as (Marmarelis, 1993):

kr �m1;…;mr � �
X

j1;…;jr

ar �j1;…; jr �bj1�m1�;…; bjr �mr � �3�

and by substitution in the Volterra series of Eq. (2), we
obtain:

y�n� � k0 1
X
j1

a1�j1�vj1�n�1
X
j1;j2

a2�j1; j2�vj1�n�vj2�n�1 …

�4�
where,

vj�n� �
X
m

bj�m�x�n 2 m� �5�

Expression (4) is a multinomial expansion of the output
signal on the variables {vj�n�} ; which can be viewed as
the outputs of Laguerre filters receiving inputx(n). Eqs.

(4) and (5) describe the equivalent block-structured Volterra
model composed of the Laguerre filter bank cascaded with a
zero-memory (static) nonlinearity. This model can be called
the “reduced Wiener model” to honor its original proponent.
The goal of this study is to demonstrate that the LVN can be
used in a practical context to yield models of the general
class of Volterra systems with arbitrary point-process
inputs.

Fig. 1 shows the LVN architecture: the Laguerre filters
{ bj} receive the stimulus datax(n) and generate (by convo-
lution) the intermediate variables {vj}, j � 0; 1;…;L; that
constitute the input vector (at each timen) for the hidden
layer comprised ofK hidden units {Hi} ; i � 1;…;K: The
outputs {zi�n�} of the hidden units are summed to generate
the outputy(n) of the LVN. The basic mathematical rela-
tions for the LVN are:

vj�n� �
XM
m�0

bj�m�x�n 2 m� �j � 0;1;…; L� �6�
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Fig. 1. The proposed model (LVN) employs an ANN with a single hidden layer and polynomial activation functions, receiving as input the outputs of a
Laguerre filter bank that pre-processes the input data.



ui�n� �
XL
j�0

wj;ivj�n� �i � 1;…K� �7�

zi�n� � ci;0 1 ci;1ui�n�1 …1 ci;Q�ui�n��Q �8�
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XK
i�1

zi�n� �9�

Supervised training of the LVN is performed on the
K�L 1 1� weights {wj;i} and on theK�Q 1 1� coefficients
{ ci;q} of the K distinct polynomial activation functions of
Qth degree. This training can be performed by means of
gradient descent methods (commonly known as delta rule
or error back-propagation) of the quadratic norm of the
output MSE:

E�n� � 1
2 � ~y�n�2 y�n��2 �10�

where {~y�n�} are the actual output observations (data).The
specifics of such commonly used training methods can be
found in various books on artificial neural networks
(Haykin, 1994; Zurada, 1992).

One novelty of the LVN architecture is the polynomial
activation functions, the use and training of which recently
has been reported in connection with Volterra models
(Marmarelis & Zhao 1997). This polynomial form of the
activation functions allows an easy transition between
ANN and the Volterra models, as elaborated below. It is
evident that the LVN can be used as an equivalent model
for the Volterra class of systems of finite orderQ.

Although the filters {bj�m�} in the filter bank of the LVN
can be any complete basis, we chose the discrete-time ortho-
normal Laguerre basis based on previous studies that have
demonstrated its desirable properties for the expansion of
Volterra kernels for many physiological systems (Marmar-
elis 1993; Watanabe & Stark, 1975). Laguerre expansions
and filters have been used for the identification of linear
dynamic systems (Ma¨kilä, 1990a,b; Wahlberg, 1991;
Wahlberg & Mäkilä, 1995).

The impulse response functions of the discrete-time
Laguerre filters are given by (Broome, 1965; Ogura, 1985):

bj�m� � a�m2j�=2�1 2 a�1=2
Xj

k�0

�21�k
m

k

 !
j

k

 !
aj2k�1 2 a�k

�0 # m # M� (11)

wherea is the discrete-time Laguerre parameter�0/a/1�
that regulates the exponential decay of the Laguerre basis
suitable for the relaxation characteristics of a given system
(Marmarelis, 1993). The proper selection ofa is critical for
successful application of this method. Along with the deter-
mination of the key parametersM, L, K, Q, it is based on
trial and error, i.e. we increase the parameter values until the
resulting reduction in the MSE of the output prediction is
below a predetermined threshold.

Note that, instead of evaluating the convolution in Eq. (6)
to compute the variables {vj�n�} ; we can use more efficiently
the recursive formula (Marmarelis, 1993):
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��
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p

vj21�n�2 vj21�n 2 1� �12�
initialized by:

v0�n� �
��
a
p

v0�n 2 1�1
��������
1 2 a
p

x�n� �13�
for n� 1;…;N; whereN is the total number of input data-
points. In addition to the computational efficacy of this
recursive method, an additional advantage is that no
assumptions are made about the system memoryM and
the only memory constraint is the data record length.

Using the basic Eqs. (6)–(9) of the LVN, we can express
the output in terms of the input as the Volterra model:
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By comparing Eq. (14) with Eq. (2), we can derive the
expressions for the system kernels in terms of the LVN
parameters {wj;i} and {ci;q} :
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These expressions can be used to estimate Volterra kernels
from trained LVN and resemble those derived by Wray and
Green (1994) in their work linking the Volterra series with
artificial neural networks. The network parameters that we
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adjust during training are the weights {wj,i} and the poly-
nomial coefficients {ci,q} of the activation functions. The
parameter updates take place at each presentation of a
data pair {x�n�; ~y�n�} and are repeated sequentially through
the data record. For therth iteration at thenth data-point we
have the parameter updates:

Dci;q�r� � mDci;q�r 2 1�1 r� ~y�n�2 y�n��uq
i �n� �19�

Dwj;i�r� � mDwj;i�r 2 1�1 r� ~y�n�

2 y�n��vj�n�
XQ
q�1

qci;quq21
i �n� �20�

where m is the momentum parameter,r is the learning
constant, andy(n) and ui�n� represent the most recently
updated values. These updating expressions are derived
following the conventional error back-propagation method
for the LVN architecture.

In the case of point-process outputs, we can append a
trainable threshold at the LVN continuous output. Then
the post-threshold output is given by:

yt�n� � s

1 1 e2l�y�n�2u� �21�

wheres is the saturation level of the sigmoidal threshold,l
is the slope of the transition between 0 ands , andu is the
threshold (offset) level. All three parameters�s; l; u� of the
sigmoidal threshold can be adjusted during the training
procedure to produce the best mean-square approximation
of the observed point-process output. Following the error
back-propagation rule, we need to calculate the gradient of
the output error with respect to each threshold parameter.
Also, the error gradient with respect to the LVN weights
{ wj;i} and the polynomial coefficients {ci;q} of the activation
functions must be now multiplied with an additional factor:

2yt�n�
2y�n� �

sl e2l�y�n�2u�

�1 1 e2l�y�n�2u��2 : �22�

The resulting updating expressions for the threshold para-
meters at therth iteration are:

Ds�r� � mDs�r 2 1�1 r� ~y�n�2 yt�n�� 1
1 1 e2l�y�n�2u� �23�

Dl�r� � mDl�r 2 1�1 r� ~y�n�

2 yt�n�� s�y�n�2 u� e2l�y�n�2u�

�1 1 e2l�y�n�2u��2 �24�

Du�r� � mDu�r 2 1�1 r� ~y�n�2 yt�n�� s�2l� e2l�y�n�2u�

�1 1 e2l�y�n�2u��2 :
�25�

3. Results

The efficacy of the LVN in modeling nonlinear neural
systems is demonstrated here with computer simulated
examples that include Poisson and non-Poisson point-
process inputs. The cases of continuous output (graded
potential) and point-process output (action potentials) are
examined separately, because of their distinct signal proces-
sing characteristics and neurophysiological importance. The
effect of output additive noise on estimation accuracy is
examined in all those cases.

Many examples with systems/models of higher order and
different forms of kernels have been successfully tested, and
two illustrative examples are provided below for the contin-
uous output case.

3.1. Continuous output

A relatively simple nonlinear system is selected for an
initial computer simulated example. It is composed of the
cascade of a linear filter and a static nonlinearity. The
impulse response function of the linear filter is represented
by a linear combination of three Laguerre functions fora �
0:7 and coefficients:20.90, 10.33, 0.70 for first, second
and third order, respectively. The static nonlinearity is a
third-degree polynomial with coefficients: 1.8, 3.5,21.9
for the first, second and third degree terms, respectively.

Since the static nonlinearity is chosen to be a third-degree
polynomial in the initial simulated example, the system
output can be expressed as:

y�n� � g0 1 g1�h�n� ^ x�n��1 g2�h�n� ^ x�n��2 1 g3�h�n�

^ x�n��3 (26)

where ^ denotes convolution,h(n) is the impulse response
of the linear filter, and {gi} are the polynomial coefficients
of the static nonlinearity.

From Eq. (26) we can derive the Volterra kernels for this
system:

k0 � g0 �27�

k1�m� � g1h�m� �28�

k2 �m1;m2� � g2h�m1�h�m2� �29�

k3�m1;m2;m3� � g3h�m1�h�m2�h�m3�: �30�
As a measure of performance, we can evaluate the esti-

mates of these kernels obtained by the LVN after training
with the simulated input–output data. Another measure of
performance can be the output prediction error, but here we
chose the Volterra kernels to assess performance.

At first, the chosen system is simulated with a Poisson
input of 512 datapoints containing 8 spikes. Since four
Laguerre functions (including the zero-order one that is
not present in the simulated system) suffice to represent
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this system, we selectL� 3, one hidden unit (K� 1) and
third-degree polynomial activation functions (Q� 3),
which are the correct parameters for this system. The back-
propagation algorithm utilizes a learning constantr � 0.01
and a momentum parameterm � 0.1. In the noise-free case,
the training algorithm converges within 500 iterations to the
precise parameter values. The 1st order and 2nd order kernel
estimates are identical to the exact ones shown in Fig. 2.

This system is simulated next with an arbitrary (non-Pois-
son) point-process input having the same number of spikes
and datapoints as before. The model parameters remain the
same and the results are identical to those of the previous
case (i.e. exact). This noise-free test was repeated for several
arbitrarily chosen non-Poisson inputs and the algorithm
always converged to the precise model parameter values.

The effect of noise was examined next by adding inde-
pendent GWN to the output of the system when the input is
an arbitrary (non-Poisson) point-process. The resulting
kernels for a signal-to-noise ratio (SNR) of 0 dB are
shown in Fig. 3, and demonstrate the robustness of this
approach in the presence of output-additive noise. As
another illustration, Fig. 4 shows the noisy output for a
testing data-record (i.e. different from the one used for train-
ing) together with the model prediction and the noise-free
output to allow comparison and demonstrate the exceptional
robustness of this approach. Note that the noisy output of the
testing data-record is contaminated by an independent
segment of the stationary GWN process that also contam-
inates the noisy output of the training data-record.

In order to address possible concerns that the initial
example is too simple and of low-order, the second simu-
lated system is comprised of a linear filter with impulse
response function:

h�n� � 0:9 e
2n
3 1 1:5 e

2n
4 2 2:7 e

2n
9 1 0:9 e

2n
20 �31�

which is not constructed as linear combination of Laguerre
functions, followed by a fifth-degree static nonlinearity with
coefficients: g0 � 0; g1 � 2; g2 � 5; g3 � 7; g4 � 24;
g5 � 6: The exact 1st and 2nd order kernels of this system
are shown in Fig. 5. When an arbitrary (non-Poisson) point-
process input is used as before, the resulting kernel esti-
mates using 9 Laguerre functions witha � 0.7 are identical
to their exact counterparts and the LVN model prediction is
identical to the system output, in the noise-free case. When
GWN is added to the output for SNR� 0 dB, the obtained
kernel estimates of 1st and 2nd order are shown in Fig. 6.
Comparison with their exact counterparts shown in Fig. 5
corroborates the efficacy of the LVN modeling approach.

These results demonstrate the basic thesis of this paper,
namely, that the proposed method is applicable for arbitrary
point-process inputs and does not require Poisson inputs to
yield accurate nonlinear models of neural systems. It must
be noted that this is true so long as the point-process input
does not have a very specific deterministic structure (e.g. a
regular sequence of spikes with constant interspike interval
would not be an effective input) and the LVN model para-
meters are not underspecified (e.g. less hidden units or
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Fig. 2. The simulated nonlinear system is composed of the cascade of a linear filter and a static nonlinearity. The first and second order kernels of this system are
shown over 75 lags.
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Fig. 3. The obtained 1st order and 2nd order kernel estimates for an arbitrary (non-Poisson) point-process input and independent Gaussian white noise added to
the output resulting in the signal-to-noise ratio (SNR) of 0 dB.

Fig. 4. The actual noisy output at SNR� 0 dB (middle trace) for an arbitrary (non-Poisson) point-process input and the model predicted output (top trace) are
shown for a testing data record (not used for training). The noise-free output is also shown (bottom trace) to allow comparison with the model prediction and to
demonstrate the robustness of this approach.



Laguerre functions than necessary). When the LVN
model parameters are overspecified, it was found that the
method yields a precise model prediction and precise kernel
estimates, but the individual estimates of the model
parameters might vary because of redundancy. This

important issue should be resolved in practice by means
of successive trials in ascending numbers of parameters,
so that by using the output prediction error as a guide,
overspecification or underspecification of the model
parameters can be avoided. A similar procedure is followed
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Fig. 5. Exact 1st and 2nd order kernels of the second simulated system.

Fig. 6. The obtained 1st and 2nd order kernel estimates of the second simulated system for an arbitrary (non-Poisson) point-process input and independent
Gaussian white noise added to the output resulting in the signal-to-noise ratio (SNR) of 0 db.



for the selection of the Laguerre parametera . This
procedure is demonstrated in Section 3.3 for a real neural
system. It was further shown that the LVN modeling
approach is robust in the presence of output-additive
noise.

3.2. Point-process output

In order to examine the efficacy of this modeling
approach in the case of point-process outputs, we append
a threshold operator of the form given by Eq. (21) to the
output of the first simulated system. The specific parameters
of this threshold operator are trainable, as discussed at the
end of Section 2 (Eqs. (23)–(25)). The composite static
nonlinearity (i.e. the cascade of the polynomial activation
function with the output threshold) can be approximated by
a power series expansion (i.e. the system and the model are
now of infinite Volterra order). This presents no practical
problems, since the proposed method estimates the coeffi-
cients of the polynomial activation functions and the output
threshold separately.

Obtained results of the model prediction in the noise-free
cases (both Poisson and non-Poisson inputs) were again
precise. Nonetheless, the resulting kernel estimates are
affected by the presence of the threshold at the output, as
anticipated by the theory (Marmarelis, Citron & Vivo,
1986). Note that there is an intrinsic scaling ambiguity
between the threshold value and the coefficients of the

polynomial activation functions, which however, does not
alter the accuracy of the model prediction.

The effect of output-additive noise was examined here by
adding independent (spurious) spikes to the system output
(both for the training and the testing data-records). These
spurious spikes can be viewed as point-process noise. The
proposed method remains robust in the presence of such
noise. For instance, when two spurious spikes are added to
the eight spikes of the noise-free output of the testing data-
record (25% contamination), the resulting model prediction
ignores the spurious spikes in the noisy output, as shown in
Fig. 7. Note that the output of the training data-record is also
subject to 25% contamination by spurious spikes. This
figure demonstrates the exceptional power of the proposed
modeling approach for real neural systems subject to extra-
neous influences (spurious spikes).

3.3. A real neural system

To demonstrate the application of the proposed meth-
odology to a real neural system, we consider the stimu-
lus-response data collected from the dentate gyrus of a
hippocampal slice preparation (Berger, Harty, Choi, Xie,
Barrionuevo & Sclabassi, 1994). The stimulus pulses
were delivered at random time intervals and the elicited
excitatory post-synaptic potentials (EPSP) were recorded
from the cell body layer of the dentate gyrus. A data-
record of 15 spikes is analyzed (about 9200 data points)
using the LVN with 7 Laguerre functions�L � 6� with
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Fig. 7. Two independent (spurious) spikes are added to the system output when an arbitrary (non-Poisson) point-process is the system input. The resulting
model prediction (top trace) along with the noisy output (middle trace) and the noise-free output (bottom trace) are shown for a testing data record (not used for
training) and illustrate the robustness of this approach.



a � 0:92; two hidden units �K � 2� and third-degree
polynomial activation functions�Q� 3�: These model
parameters were determined by successive trials, start-
ing with low parameter values and increasing methodi-
cally each parameter until the MSE of the model
prediction ceases being significantly reduced. Note that
the selected LVN contains only 22 free parameters to be
trained with the data.

Convergence was achieved within 100 iterations, and the
resulting model prediction is shown in Fig. 8 along with the
actual system response. Note that in order to facilitate the
display of these data (sampling interval of 0.1 ms), we elim-
inate the “silent intervals” between EPSP’s and mark the
length of each silent interval after the following EPSP (in
number of sample points). The result corroborates the effi-
cacy of this approach, because of the good agreement
between the model prediction and the actual system
response in terms of the waveform and size of the EPSP
(except for the high frequency noise evident in the response
recording). The obtained first and second order kernels are
shown in Fig. 9. These kernel estimates were consistent for
different data segments and experimental preparations,
attesting to the validity of the obtained LVN model. It is
also worth noting that when the first ten EPSPs were used
for training, the resulting LVN was able to predict the
following five EPSPs. This demonstrates the generalization
capability of the LVN.

4. Conclusions

A practicable approach to the modeling problem of
nonlinear neural systems with arbitrary point-process inputs
is proposed that employ a novel network architecture and
adaptive estimation techniques (i.e. training of the network
parameters by error back-propagation algorithms). The
novelty of the network, termed the LVN is in utilizing a
Laguerre filter bank for pre-processing the input data and
using trainable polynomial activation functions in the single
hidden layer. The LVN is also adapted to point-process
outputs by appending a trainable threshold operator at the
output.

It is shown with computer-simulated examples and real
neural data that the proposed LVN methodology is capable
of yielding accurate nonlinear models for both continuous
and point-process outputs in response to arbitrary point-
process inputs (so long as the latter do not attain a very
restrictive deterministic form). This waives the restrictive
requirement of Poisson input processes for kernel estimation
via the CCT. The method also is shown to be robust in the
presence of both continuous and point-process output-addi-
tive noise.

The proposed nonlinear modeling methodology offers an
effective tool for the study of neural systems under condi-
tions of spontaneous activity that cannot be studied with
current nonlinear methods (since the latter require Poisson

K. Alataris et al. / Neural Networks 13 (2000) 255–266264

Fig. 8. The stimulus-response data collected from the dentate gyrus of a hippocampal slice preparation. The response to a stimulation record of 15 spikes is
shown along with the LVNs model prediction. For clarity of presentation, we skip over the “silent intervals” between spikes and mark the length of eachsilent
interval after the following output spike in number of sample points. When no number appears after a spike, there is no preceding silent period. The time
denoted in the abscissa is not real time but “pseudo-time” because of the omission of the silent intervals.



inputs). It can be extended to the case of multiple inputs and
multiple outputs as to allow analysis of the data from multi-
site recordings of neuronal ensembles.
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