Ath Annual BMSR Works Advanced Methods ^{of} ^{Sysiological System Modeling}

University of Southern California Biomedical Simulations Resource (BMSR)

Marina Beach Marriott Hotel 4100 Admiralty Way Marina del Rey, California

Sponsored by

BIOMEDICAL TECHNOLOGY PROGRAM NATIONAL CENTER FOR RESEARCH RESOURCES NATIONAL INSTITUTES OF HEALTH

> Chairman & Organizer Vasilis Z. Marmarelis, Ph.D. Theodore W. Berger, Ph.D.

Biomedical Simulations Resource University of Southern California Olin Hall 500 Los Angeles, CA 90089-1451 Tel: (213) 740-0342 Fax: (213) 740-0343 http://www.usc.edu/dept/biomed/BMSR

Workshop Schedule Friday, November 13, 1998

Introductory Remarks	Vasilis Marmarelis University of Southern California
What We Can Learn from Second-Order Kernels About Tuning in the Vertebrate Ear	Ted Lewis University of California, Berkeley
Two Phenomena in Spatiotemporal Maps of Cortical Receptive Fields: Does Spiking Confer Special Properties on Kernels? Are Some Spikes More Special than Others?	Jonathan Victor Cornell University Medical College
Chaos and Rhythmicity in Biological and Artificial Neural Networks	Berj Bardakjian University of Toronto
Break	
Two-Bar Nonlinear Interactions in Subunits are Necessary and Sufficient to Explain Movement Responses in Cortical Neurons	Robert Emerson & William Vaughn University of Rochester
Two-Bar Interaction Fields Simulations for a Spatio-Temporal Gradient Motion Model	Alan Johnston University College London
Striate Cortex Enhances Contrast Gain of Macaque LGN Neurons: Implications for Structural Modeling Based on White Noise Stimulus-Response Data	Daniel Pollen & Andrzej Przybyszewski University of Massachusetts Medical Center
Lunch	
Nonlinear Analysis of a Spider Mechanoreceptor Using Principal Dynamic Modes	Andrew French Dalhouise University, Halifax
Nonlinear Analysis of Binocular Neurons in the Cat's Striate Cortex	Akiyuki Anzai University of California, Berkeley
Detection and Analysis of Lateral Nonlinear Mechanisms in Systems with a Large Number of Parallel Inputs	Erich Sutter Smith-Kettlewell Eye Research Foundation (San Francisco)
Break	
Dynamic Spectral Envelope Processing in the Cat Auditory Midbrain	Monty Escabi University of California, San Francisco
Distinguishing Inner Ear Disease Using a Nonlinear Systems Identification Procedure	Mark Chertoff & David Lerner University of Kansas
The Structural and Functional Plasticity of the Subcortical Visual Receptive Fields	Yuri Danilov University of Wisconsin-Madison
Modeling Methodology for Nonlinear and Nonstationary Physiological Systems with Multiple Inputs	Vasilis Marmarelis University of Southern California
	Introductory Remarks What We Can Learn from Second-Order Kernels About Tuning in the Vertebrate Ear Two Phenomena in Spatiotemporal Maps of Cortical Receptive Fields: Does Spiking Confer Special Properties on Kernels? Are Some Spikes More Special than Others? Chaos and Rhythmicity in Biological and Artificial Neural Networks Break Two-Bar Nonlinear Interactions in Subunits are Necessary and Sufficient to Explain Movement Responses in Cortical Neurons: Two-Bar Interaction Fields Simulations for a Spatio-Temporal Gradient Motion Model Striate Cortex Enhances Contrast Gain of Macaque LGN Neurons: Implications for Structural Modeling Based on White Noise Stimulus-Response Data Lunch Nonlinear Analysis of a Spider Mechanoreceptor Using Principal Dynamic Modes Nonlinear Analysis of Lateral Nonlinear Mechanisms in Systems with a Large Number of Parallel Inputs Break Dynamic Spectral Envelope Processing in the Cat Auditory Midbrain Distinguishing Inner Ear Disease Using a Nonlinear Systems Iche Structural and Functional Plasticity of the Subcortical Visual Receptive Fields Modeling Methodology for Nonlinear and Nonstationary Physiological Systems with Multiple Inputs

5:15 Reception

Workshop Schedule

Saturday, November 14, 1998

9:00	Nonlinear Systems Analysis of the Mammalian Hippocampus:
	Experimental Characterization, Modeling and Analog VLSI
	Implementation
	-

- 9:30 Indicators of Functional Anatomic Connectivity Derived from Population Analyses of Hippocampal Neural Ensembles
- 10:00 Role of Nonlinear Synaptic Dynamics in Temporal and Spatio-Temporal Pattern Recognition
- 10:30 Break
- 10:45 Photonic Implementation of Neural Networks
- 11:15 A Comparison of Orthogonal Search and Canonical Variate Analysis for the Identification of Neurobiological Systems
- 11:45 On the Usefulness of a Unifying Formalism to Integrate Physiological Functions. The Example of the S-Propagators
- 12:15 Lunch
- 1:30 Minimal Realizations of the Hodgkin-Huxley Equations
- 2:00 Special Neural System Configurations that Provide Feedforward Signal Redundancy
- 2:30 Scaling Properties of the Time Intervals Between Arrhythmic Events in the Heart
- 3:00 Break
- 3:15 Modeling the Effects of Viewing Distance and Rotation Axis Location on Primate Vestibulo-Ocular Reflex
- 3:45 Visual Programming Environment for Physiological System Analysis and Other Applications
- 4:15 Could There be Real-Time, Instantaneous Learning in the Brain?

Theodore Berger University of Southern California

Samuel Deadwyler & Robert Hampson Wake Forest University School of Medicine

Jim-Shih Liaw University of Southern California

Armand Tanguay University of Southern California

Robert J. Sclabassi University of Pittsburgh

Gilbert Chauvet Institut de Biologie Theorique, France

Gary Green Newcastle Medical School United Kingdom

George Swanson McLeod Institute of Simulation Sciences California State University, Chico

Larry Liebovitch Florida Atlantic University

Olivier Coenen The Salk Institute for Biological Studies University of California, San Diego

Edward Lipson Syracuse University

Asim Roy Arizona State University

4:45 Open Discussion