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Abstract—The effect of spontaneous beat-to-beat mean arterial
blood pressure fluctuations and breath-to-breath end-tidal CO,
fluctuations on beat-to-beat cerebral blood flow velocity variations
is studied using the Laguerre—Volterra network methodology for
multiple-input nonlinear systems. The observations made from
experimental measurements from ten healthy human subjects
reveal that, whereas pressure fluctuations explain most of the
high-frequency blood flow velocity variations (above 0.04 Hz),
end-tidal CO» fluctuations as well as nonlinear interactions
between pressure and CO- have a considerable effect in the lower
frequencies (below 0.04 Hz). They also indicate that cerebral
autoregulation is strongly nonlinear and dynamic (frequency-de-
pendent). Nonlinearities are mainly active in the low-frequency
range (below 0.04 Hz) and are more prominent in the dynamics
of the end-tidal CO,-blood flow velocity relationship. Significant
nonstationarities are also revealed by the obtained models, with
greater variability evident for the effects of CO> on blood flow
velocity dynamics.

Index Terms—Cerebral autoregulation, cerebral hemo-
dynamics, Laguerre-Volterra network, nonlinear modeling,
nonstationary systems, Volterra kernels.

I. INTRODUCTION

EREBROVASCULAR resistance is controlled by mul-
Ctiple homeostatic mechanisms, which regulate cerebral
blood flow (CBF). The cerebrovascular bed is able to maintain
a relatively constant CBF despite changes in cerebral perfusion
pressure [1]-[3]. Cerebral autoregulation was long viewed as a
static phenomenon, whereby the “steady-state” pressure-flow
relationship is described by a sigmoidal curve with a wide
plateau, suggesting that CBF remains constant despite changes
in pressure within certain bounds. However, with the develop-
ment of transcranial Doppler (TCD) ultrasonography for the
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noninvasive measurement of CBF velocity (CBFV), which has
been shown to represent CBF well in most practical cases, in
the middle cerebral artery with high temporal resolution, it was
found that CBFV can vary rapidly in response to variations of
systemic arterial blood pressure (ABP) over various time scales
(4], [5].

The availability of such data has revealed information about
the dynamic properties of cerebral autoregulation and the quan-
titative manner in which rapid changes in pressure induce rapid
changes in flow. It has also cast doubt on the validity of the no-
tion of “steady-state,” since no such “steady-state” is ever ob-
served in the natural operation of cerebral circulation. In ad-
dition to controlled experiments, spontaneous fluctuations of
beat-to-beat mean ABP (MABP) and mean CBFV (MCBFV)
possess broadband characteristics and have been recently em-
ployed for the study of dynamic cerebral autoregulation, using
linear [6]-[9] and nonlinear [10], [11] modeling methods. Im-
pulse response or transfer function estimates in linear analysis
and Volterra models in nonlinear analysis have demonstrated
that cerebral autoregulation is more effective in the low-fre-
quency range (below 0.1 Hz), where most of the MABP spec-
tral power resides (i.e., most spontaneous MABP changes do
not cause large MCBFV variations). The presence of significant
nonlinearities, which are more prominent in this low-frequency
range, was indicated in [11], suggesting that cerebral autoregu-
lation mechanisms exhibit dynamic (i.e., frequency-dependent)
nonlinearities.

It is also well established that arterial gases produce vas-
cular responses in cerebral vessels [1]-[3]. Arterial CO5 ten-
sion (P,co,) is one of the strongest physiologic modulators
of CBF [1]. The main mechanism of P,co, reactivity is de-
scribed by the pH hypothesis [12], which postulates that sys-
temic CQOs crosses the blood-brain barrier and modulates the
extracellular and perivascular [H*], thus changing the smooth
muscle properties. Specifically, hypercapnia induces vasodila-
tion and hypocapnia causes vasoconstriction. According to the
static point of view, hypercapnia narrows the autoregulatory
plateau, making autoregulation less effective, while hypocapnia
widens the plateau.

A number of studies have examined CBFV responses to step
changes in CO4, tension [13]-[16], and it was shown that this re-
sponse is not instantaneous but lags the CO5 tension changes by
several seconds. Poulin et al. developed a simple one-compart-
mental model for the cerebrovascular response to hypercapnia
[15], characterized by a time constant, a gain term and a pure
delay. A second compartment with a larger time constant (on the
order of 7 min) had to be included for the hypocapnic response
[16], since a secondary, slow adaptation (increase) of CBFV
to the hypocapnic stimulus was reported. An asymmetry in the

0018-9294/04$20.00 © 2004 IEEE



MITSIS et al.: NONLINEAR MODELING OF THE DYNAMIC EFFECTS OF ARTERIAL PRESSURE AND CO> VARIATIONS

on-transient and off-transient responses to hypocapnia was also
reported, the on-transient being significantly faster and with a
smaller gain than the off-transient, and a pure time delay equal to
3.9 s was estimated [16]. Nonlinear mathematical models were
developed in [17], [18] in order to describe the interactions be-
tween autoregulation, CO» reactivity and intracranial pressure,
whereby the interaction between P,co, and autoregulation was
modeled with a sigmoidal relationship.

Since P,co, reactivity can be assessed by breath-to-breath
end-tidal CO2(Prrco,) measurements, spontaneous Prrco,
variations may be employed to study the dynamic character-
istics of the P,co,-MCBF relationship, in a similar manner
to spontaneous MABP variations. To our knowledge, this has
been done in only one study so far [19], in which Panerai et al.
employed causal finite-impulse response filters and sponta-
neous breath-to-breath Prrco, variations to assess the effect
of arterial CO5 on MCBFV. It was found that when used along
with beat-to-beat MABP variations, Prrco, variations im-
prove the error performance of the model considerably (though
pressure fluctuations explain a larger fraction of CBFV vari-
ability). The temporal characteristics of the MABP-MCBFV
and Prrco,-MCBFYV relations were obtained in the form of
impulse responses. The possibility of interactions between the
two input variables was also investigated, but there were no
significant interactions reported.

However, in the aforementioned study, the dependence of
MCBFV on the two input variables (MABP and Pgrco,) was
assumed to be linear and nonlinearities were included in the
form of second-order cross-terms only. Cerebral autoregulation
is nevertheless characterized by inherent and significant nonlin-
earities [10], [11] and in order to obtain accurate models, these
nonlinearities should not be neglected. The Laguerre—Volterra
network (LVN) methodology [20] was employed successfully
to model the MABP-MCBFV nonlinear dynamic relationship
in [11]. Here, we employ a different formulation of the LVN,
termed the multiple-input LVN (MI-LVN), suitable for mod-
eling nonlinear systems with multiple inputs in order to as-
sess the nonlinear dynamic effects of MABP and Pgrco, on
MCBFV as well as the effects of their nonlinear interactions.

II. METHODS
A. Experimental Methods

Ten subjects participated in the study (age 30.4 £ 20.1 years,
height 179.6 £ 8.9 cm, weight 76.6 £ 14.0 Kg). None of the
participants was on any medication and all of them were nor-
motensive and did not have a history of any cardiovascular, pul-
monary or cerebrovascular diseases. The study was approved
by the Central Oxford Research Ethics Committee and the pro-
cedures were explained to all the participants, who gave their
written consent before the study. The subjects were refrained
from food and caffeine-containing beverages for at least 4 hr
before the sessions, which lasted about 40 min. Each subject’s
resting Perco, was measured with a nasal catheter.

According to the experimental protocol, the mean value of
end-tidal Po, (Pgrro,) was held at 100 torr, whereas the mean
value of Perco, was held at about 1.5 torr above the subject’s
normal value (as determined on that day). Respiratory volumes
were measured with a turbine volume transducer (SensorMedics
VWM Series, CardioKinetics, Salford, U.K.). Gas was sampled
continuously at a rate of 20ml/min and its composition (frac-
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tional concentrations of Oy, CO2, and N5) was measured by
a mass spectrometer (model MGA3000, Airspec, Biggin Hill,
U.K.). The experimental variables were sampled every 20 ms.
Accurate control of the respiratory gases was achieved by using
the dynamic end-tidal forcing technique [21], [22], whereby
a controlling computer maintains the end-tidal values close to
their desired level by receiving feedback on a breath-to-breath
basis and by using a fast gas-mixing system. It has been sug-
gested [23], [24] that Prrco, changes are a good index of
P,co, changes in both old and young subjects at rest.

ABP was monitored continuously in the finger by photo-
plethysmography (Ohmeda 2300, Finapres). The pressure data
were sampled every 10 ms. The reliability of this technique
for measuring ABP has been established in previous studies
[25], [26]. The Doppler signals were measured with a 2-MHz
Doppler ultrasound system (PCDop 842, SciMed, Bristol,
U.K.) in the right middle cerebral artery (MCA). The maximum
and intensity weighted Doppler shifts were made available
as analog signals and were updated every 10 ms (at which
intervals a new spectrum was calculated). The signals were
sampled every 10 ms (DAQWare, National Instruments United
Kingdom, Newbury, U.K.) and were saved, along with the
time occurrence of each QRS complex and the pressure data
for the subsequent analysis. The MCA was identified by an
insonation pathway through the right temporal window just
above the zygomatic arch by using search techniques described
in [27] and [28]. Optimization of the signals was performed by
varying the sample volume depth incrementally and the angle
of insonance at each depth, in order to obtain the best quality
Doppler shifts corresponding to the maximum power signal. In
order to maintain the optimal insonation position and angle, the
Doppler probe was securely positioned in a headband device
(Muller and Moll Fixation, Nicolet Instruments).

Measurements of the velocity corresponding to the max-
imum Doppler shift Vp, which is associated with the fastest
moving blood in the vessel, the intensity-weighted mean
velocity Viww, which corresponds to the mean velocity of the
blood averaged over the entire cross section and is based on
the entire velocity spectrum and the reflected Doppler signal
power P, which is an index of the cross-section area were
collected every 10 ms. Mean values for each signal (V p,
Viwwsm, P, and P - Viwy) were calculated over each cardiac
cycle. The variables Vp, Viwm, and P - Viwum can be all
used to represent blood flow, although V p is the easiest to
measure and has been used extensively in the literature as a
surrogate variable for CBF [5]-[11], [15], [16], [19]. V p does
not account for any changes in vessel size, and neither it nor
V rwu can be considered to be proportional to blood flow when
major vessel size changes occur. However, it has been found
[28] that changes occurring in the MCA cross-sectional area
under control, hypoxic or hypercapnic conditions are minimal
and that the temporal patterns of Vp, Viwm and P - Viwu,
as well as their average values, are very similar (as assessed
by statistical analysis); therefore, beat-to-beat changes of all
three reflect CBF changes well. A significant increase in MCA
size (3.8% increase in Doppler power signal) was reported
only under combined hypoxia and hypercapnia, whereby V p,
Viwwm underestimated the changes in P - Vwyn [28]. Since
the mean values of Pgrco, and Pgro, were set at normal
levels and spontaneous fluctuations around those values are
employed in our case, V p is employed as an index of CBF.
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Fig. 1. The multiple-input Laguerre—Volterra network (MI-LVN) for a system with two inputs. The two Laguerre filter-banks {bgl)} and {bgz)} preprocess

the inputs #1(n) and @ (n), respectively. The hidden units in the second layer receive a summation of the outputs from all Laguerre filters {1)§i)(n)},

weighted by {wgz)]}, as their input (ie., ux(n) = > 7,

2 ZJ[.‘;'O wii)j’uy)(n)) and have polynomial activation functions {f.}, their output given by

21(n) = felur(n)] = 29 _, e ruf(n): The output y(n) is formed by a nonweighted summation of the outputs of the hidden units {2, } and the output

m=1

offset yo(y(n) = S5, 2(n) + yo).

Real time beat-to-beat mean values of ABP and CBFV were
calculated by integrating the waveform of the sampled signals
within each cardiac cycle (R-R interval). The beat-to-beat
values were then interpolated and resampled at 1 Hz (after
anti-aliasing low-pass filtering) to obtain equally spaced time
series of MABP and MCBFV data. The breath-to-breath
Pgrco, data were interpolated in order to obtain values every
1 s. Since practically all Pgrco, power lies below 0.1 Hz,
there were no high-frequency artifacts inserted because of the
interpolation.

B. Mathematical Methods

The LVN methodology is a variant of the general Volterra-
Wiener approach [29], [30] and has been shown to yield accurate
nonlinear methods from short stimulus-response records [20]. In
this study, its extension for multiple-input systems is employed
[31]. The equivalent LVN model of a two-input, QQth-order non-
linear system is shown in Fig. 1.

Each of the two inputs x1(n), z2(n) is preprocessed by (i.e.,
convolved with) a different Laguerre filter-bank and the filter
outputs are fully connected to a layer of hidden units with poly-
nomial activation functions. The free parameters of the network
of Fig. 1 are the Laguerre parameters (a1, co) of the two filter-

banks {b;l)} and {bgz)}’ the connection weights {w,(f)]}, the

polynomial coefficients {c,, 1} and the output offset yo. The
total number of the MI-LVN parameters is equal to (L1 + La +
2+ Q) - K + 3, where (Ly, Ly) are the maximum orders of
the Laguerre functions employed in the two filter-banks, @ is
the order of the polynomial activation functions and K is the
number of hidden units. Note that this number of free parame-
ters is linear with respect to (), which ensures compact repre-
sentations even for higher order systems.

The input—output data are used to train the network via an
iterative gradient descent scheme. This is done through the fol-
lowing relations:

w T = w0 o, |60 () (m)| @)
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where the network variables and parameters are de-
fined in Fig. 1, e(n) is the output prediction error, f;,
denotes the derivative of f; with respect to wu; (i.e.,

il = Seym [eqnu” (m)1
the iteration index and 7y, Yc, vy, 7Y are fixed posmve learning

constants. Note that the variables v; )(n), k(n), fi.(n) and
¢(n) are evaluated at the rth iteration for the current network
parameter values, as denoted by [-] . in (1)—(4).

With the use of two Laguerre filter-banks characterized by
distinct Laguerre parameters («, ap) we can model the linear
and nonlinear dynamics associated with each input as well as
their nonlinear interactions. The MI-LVN representation of a
system is equivalent to the general Volterra model, given below
for a two-input ch-order system

—ko+ZZ Z{Z > ki, (L mp)

n=1¢=1 ip=1 My

) r denotes

Xz (n—my) - x; (n—myu)p (5)
where x;(n) are the two system inputs, y(n) is the system output
and k;,...;, denotes the nth-order Volterra kernel of the system
describing the nth-order nonlinear interactions between the two
inputs. If 4y = --- = 4, = i, k;..; denotes the nth-order
self-kernel corresponding to the ith input of the system, and de-
scribes the linear (n = 1) and nonlinear (n > 1) effects of the
sth input on the output, whereas if some of 41 - - - ¢,, are different,
ki, ...;, denotes the nth-order cross-kernel of the system, which
describes the nonlinear interactions between the two inputs. The
Volterra kernels in (5) can be expressed in terms of the trained

network parameters as follows:

ko = yo (6)
Z Cl,k Z w,(:]by (7
j=
K
kii(mlme) ZCQkZ Zwk i
k=1 J1=0 J2=0
x wi b8 ()b (ms) ®)
K Ly Lo
bt = 32 353 )
k=1 Ji=0 J2=0
2) 4(1 2
’(ijzbh)( )b( )(mQ) (9)
) = 3 s 35 3 ) )
]1 0 ]n 0
x b§? (ma) b (m,). (10)

The input signals of the MI-LVN model are the spontaneous
MABP and Pgrco, fluctuations, while the output signal is the
MCBFV variations (represented by V p). Six-minute data seg-
ments (i.e., with a length of 360 points) are used to train the
network, after high-pass filtering (at 0.005 Hz) to remove very
slow trends and normalizing to unit variance in order to avoid
numerical problems related to the difference in the power of the
signals.

The structural parameters of the MI-LVN are selected by
applying the “minimum description length” (MDL) criterion
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TABLE I
MEAN VALUES (& STANDARD DEVIATIONS) OF MABP, Prrco, AND
MCBFYV, AVERAGED OVER THE 40-MIN RECORDINGS FROM 10 SUBJECTS

MABP [mm Hg] B0 [mm Hg] MCBFV[cm/sec]
77.2+9.1 40.0£1.9 59.1x12.3
Mean Arterial Blood Pressure End-tidal CO2 Mean Cerebral Blood Flow Velocity
90 70
40
80 el = e
2 1 2 38 § 60
£ i £ =
E70 E37 555
36
50
60 35
0 120 240 360 O 120 _240 360 O 120 _240 360
Time [sec] Time [sec] Time [sec]
MABP spectrum PETCO2 spectrum MCBFYV spectrum
250
200 8 100
150 6 8
0 60
100 4
40
50 2 20
0

0 0
0 01 02 03 0 01 02 03 0 01 02 03

Frequency [Hz] Frequency [Hz] Frequency [Hz]

Fig. 2. Typical data segments used for model estimation. Top: time series,
bottom: spectra of high-passed (at 0.005 Hz) signals.

[32] to the normalized mean-square error (NMSE) of the output
prediction achieved by the model for the training data. The
output prediction NMSE is defined as the sum of squares of the
residuals of the model prediction (i.e., difference from the true
output) over the sum of squares of the true output. This ensures
that we obtain an accurate model representation of the system
and avoid overfitting to the specific data segment. Following
this procedure, a two-input MI-LVN with L; = Ly, = 7,
K = 3, and Q = 3 is selected in all cases. Note that the total
number of unknown parameters in this MI-LVN model is 60,
which is extremely low compared to conventional techniques
such as the cross-correlation technique, which would require
the estimation of over 15000 values for the first-, second-,
and third-order kernels for a kernel memory of 100 lags. The
achieved model parsimony results also in a significant improve-
ment in the prediction NMSE. In order to avoid overtraining
the network, a 2-min forward segment of data (adjacent to the
6-min training data segment) is used for cross-validation pur-
poses. The network training is terminated when the prediction
NMSE for the cross-validation segment is minimized.

III. RESULTS

The mean values of the MABP, Prrco, and MCBFV data,
averaged over the 40-min recordings for the ten subjects, are
given in Table I. Typical 6-min data segments are shown in
Fig. 2, along with the spectra of the corresponding high-passed
data sets. Most of the MABP and MCBFV power resides below
0.1 Hz, however the latter exhibits some power up to 0.3 Hz.
Almost all of the Perco, power lies below 0.1 Hz and is sig-
nificantly smaller than that of the other two signals. To alleviate
this, all signals are normalized so that they have unit variance
prior to model estimation, as mentioned before.
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True output

15t order residuals

Total residuals

0 0.05 0.1 015 0.2 025 03
Frequency [Hz]

Left: Actual CBFV output and model predictions (total, linear and nonlinear terms) for a typical data segment (taken from subject 091). Right: Spectra of

actual output and model residuals (linear and total). The shaded area denotes the effect of the nonlinear terms in the frequency domain.

TABLE 11
MEAN PREDICTION NMSES (4 STANDARD DEVIATIONS)
FOR ONE-INPUT AND TWO-INPUT MI-LVN MODELS

Model order Model inputs
MABP Prrco, MABP & Py,
1 42.2+72% 93.2+2.7% 38.2+6.5%
2 25.7+8.3% 78.2+6.4% 22.0£6.0%
3 26.8+£7.6% 71.7£4.8% 20.2£5.4%

The average achieved in-sample prediction NMSE’s are
given in Table II for one input (MABP or Pgrco,) and
two-input (MABP and Prrco,) linear and nonlinear MI-LVN
models. The complexity of the one-input and two-input models,
in terms of the total number of their free parameters, is the
same. While MABP fluctuations explain most of the MCBFV
variations, as reported previously [19], the incorporation of
Pgrco, fluctuations in the model reduces the achieved output
prediction NMSEs (about 6% reduction in prediction NMSE).
A significant reduction in the prediction NMSE, which sat-
isfies the MDL criterion, is observed when nonlinear models
are used instead of linear models (about 16% for one-input
models and 18% for two-input models). The prediction NMSE
achieved by third-order models is smaller than that achieved
by second-order models in the two-input case and satisfies the
MDL criterion; hence, a third-order model is selected.

The prediction achieved by the MI-LVN model for a typical
data segment (taken from subject # 091) is shown in Fig. 3
(left), along with the contributions of the linear and nonlinear
self and cross-terms. The model prediction is very close to the
true output, as denoted by the low value of the NMSE (18%),
and the contribution of the nonlinear terms is significant (reduc-
tion in the prediction NMSE is over 20%) and occurs mainly in
the low frequencies. This is illustrated in Fig. 3 (right), where
the spectrum of the true output is compared with the spectra of
the total and first-order model residuals. The shaded area corre-
sponds to the improvement achieved by the nonlinear terms and
demonstrates that nonlinearities are prominent below 0.08 Hz,
agreeing with the results presented in [11].

The contribution of each of the two model inputs as well as
their nonlinear interactions can be seen in Fig. 4 (left) for the
same segment. The top trace corresponds to the total model pre-
diction, the second trace corresponds to the contribution of the
MABP terms (linear and nonlinear terms), the third trace corre-
sponds to the contribution of the Prrco, terms and the bottom
trace corresponds to the nonlinear (second and third-order)
cross-terms. The MABP component accounts for 60% of the
total model prediction power, the Prrco, component accounts
for an additional 17% of the total model prediction power, and
the cross-term component accounts for the remaining 23%.
The significance of the cross-term contribution is consistently
observed among different data segments and contradicts the
findings of previous studies [19], where it was found to be
negligible. This is shown in Table III, where the achieved
prediction NMSE of the third-order models after removing
the model cross-terms is given, along with the total achieved
NMSE and the reduction due to the cross-terms, averaged over
all subjects. The average reduction is over 25% and exhibits
considerable variability (from as low as 5% to as high as 70%,
following roughly a x? distribution). It is interesting to note
here that in the one subject (# 147) that was considerably older
than the other subjects (age: 82 yr) the average reduction due
to the cross-terms was found to be substantially larger (average
value of 47%). The spectra of the MABP and total residuals are
shown in Fig. 4 (right) along with the true output spectrum. It
is observed that most of the contribution of the MABP terms
lies above 0.04 Hz, i.e., in the intermediate and high-frequency
ranges, whereas the contribution of Prpco, terms and the
MABP-Pgrrco, cross-terms lies below 0.08 Hz and is more
prominent below 0.04 Hz, i.e., in the low-frequency range, as
denoted by the shaded area.

By comparing Figs. 3 and 4, it can be inferred that the relative
nonlinear-to-linear effect of MABP is greater for Perco, than
MABP. This is illustrated in Fig. 5, where the contribution of
each input (MABP and Pgrco,) in the total model prediction
is decomposed into its linear and nonlinear (self) components
for the same data segment. For this specific segment, the power
of the linear MABP component corresponds to around 80% of
the total MABP term power, whereas the power of the linear
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Fig. 4. Left: Actual output, LVN model prediction and contributions of MABP, PETCOQ and nonlinear interaction terms for the data segment of Fig. 3.
Right: Spectra of output, MABP and total residuals. The shaded area shows the effect of the Prrco, terms and cross-terms in the frequency domain.

TABLE 1II
MEAN PREDICTION NMSES (4 STANDARD DEVIATIONS) FOR THIRD-ORDER MI-LVN MODELS WITH AND
WITHOUT INCLUSION OF NONLINEAR TERMS AND CROSS-TERMS, CALCULATED OVER ALL TEN SUBJECTS

Prediction NMSE

NMSE reduction

No cross-terms ~ No nonlinear terms Total Cross-terms Nonlinear terms
49.8+18.6% 52.2+21.5% 20.2£5.4% 27.1+£12.3% 31.2£19.1%
TABLE IV

Model prediction Model prediction!

PETCO2 contribution

Linear PETCO2 contribution

Nonlinear MABP contribution Nonlinear PETCOZ contribution

0 60 120 180 240 300 360 0 60 120 180 240 300 360
Time [sec] Time [sec]

Linear MABP contributiol

Fig.5. Decomposition of the contribution of MABP (left) and PETCOQ terms
(right) into linear and nonlinear components for the data segment of Fig. 3.

Prrco, component is approximately equal to that of its non-
linear counterpart. The aforementioned observations are con-
sistent among different segments and/or subjects, as shown in
Table IV, where the power ratio of nonlinear to linear output
components for MABP and Pgrco,, averaged over all sub-
jects, is given. This ratio is smaller for MABP (the power of
the nonlinear MABP component is equal to approximately 30%
of its linear counterpart), while for Prrco, the output com-
ponent due to the nonlinear self-terms exhibits more power on
the average than the linear component (ratio of around 1.2 or
120%), in agreement with the observations made from the typ-
ical data segment of Fig. 5. Considerable variability is observed
in the contribution of the nonlinear terms to the output pre-
diction NMSE. The average NMSE reduction due to the non-
linear model terms (self-terms for MABP, Pgrco, as well as

MEAN POWER RATIO (3= STANDARD DEVIATIONS) OF NONLINEAR TO LINEAR
MABP AND Perco, OUTPUT COMPONENTS OVER ALL SUBJECTS

MABP P ETCO,

Power ratio 0.31+£0.13 1.18+0.45

cross-terms), in the case of third-order models, is also given
in Table III. Its average value is over 31% and, as in the case
of cross-terms only, it exhibits a wide range of values (from
5% to over 80%). The NMSE reduction is once more larger
for the older subject (63.1% + 25.7%). This is to be expected,
since the cross-terms are part of the nonlinear terms, however it
should be noted that the effects of the nonlinear self-terms and
cross-terms on the model NMSE reduction are not additive (lack
of orthogonality). The variability in the contribution of the non-
linear terms is reflected also in the form of the nonlinear self
and cross-kernels.

The first-order MABP Volterra kernel, averaged over all ten,
40-min recordings (6-min sliding data segments with a 5-min
overlap), is shown in Fig. 6 both in the time and frequency
domains (log-linear plots, whereby the time lag values are in-
cremented by one). The form of the kernel is very consistent
among different segments and subjects, as demonstrated by the
tight standard deviation bounds. The high-pass characteristic
of the linear frequency response, after taking into account that
MABP changes are translated into MCBFV changes in a mostly
linear manner, implies that slow MABP changes are attenu-
ated more effectively, i.e., autoregulation of pressure variations
is more effective in the low-frequency range (< 0.04 Hz). A
resonant peak is evident at around 0.2 Hz, with shoulders ap-
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pearing at 0.025 and 0.07 Hz. Compared to the linear frequency
response obtained when only MABP is used as an input [11], the
MABP-MCBFV linear frequency response of Fig. 6 exhibits re-
duced gain in the low-frequency range, reflecting the fact that
most of the low-frequency MCBFV variations are explained by
Pgrco, fluctuations. In the intermediate and high-frequency
ranges, the MABP first-order kernels are not affected by the in-
clusion of Pgrco, as an additional input variable.

The average first-order Perco, kernel over all recordings is
shown in Fig. 7. It should be noted that the results shown here
are obtained after shifting the Prrco, data by 4 points (i.e.,
4 s), since it was initially determined that a pure delay on the
order of 3—4 s is present in the Pprco, dynamics, in agreement
with [16]. This delay appears in the form of high variance values
for the initial time lags of the first- and second-order kernel
estimates. When the analysis is repeated with the Prrco, data
shifted accordingly, the obtained kernels exhibit considerably
reduced variance in their initial time lags and are not affected
otherwise, while the prediction NMSEs remain roughly the
same. The first-order Prrco, frequency response (right) has
most of its power below 0.015 Hz (notice the plateau)—giving

the Perco, frequency response a low-pass characteristic rather
than the high-pass characteristic of its MABP counterpart.

Typical second-order MABP and Pgrco, self-kernels
and the corresponding cross-kernel are shown in Fig. 8
(subject 091). Most of the power of the second-order ker-
nels lies below 0.1 Hz. There are two diagonal peaks in the
MABP second-order frequency response; a main peak at
[0.02,0.02 Hz] and a secondary peak at [0.16,0.16 Hz], as
well as a secondary off-diagonal peak at [0.02,0.16 Hz].
The Pgrco, second-order frequency response has one main
diagonal peak also at [0.02,0.02 Hz]. The main cross-kernel
peak occurs at [0.02,0.02 Hz|, and a secondary one occurs at
[0.16 Hz,0.02 Hz], both of them being related to the MABP
and Prrco, self-kernel main peaks and implying nonlinear
interactions between the primary mechanisms of the two
inputs acting at these specific frequency bands. Although the
second-order kernels are considerably variable among different
data segments, the main peak of the second-order MABP
frequency response is consistent and stays within the 0.01 and
0.02 Hz bounds on the diagonal of the bi-frequency domain,
while the main diagonal peak of the Pgrco, frequency
response lies between 0 and 0.04 Hz on the diagonal (i.e., its
location varies more). The cross-kernel peaks are related in
general to the self-kernel peaks.

The nonstationary characteristics of the first-order MABP
and Pgrco, kernels are tracked over the 40-min recordings
by computing their fast Fourier transform (FFT) magnitude for



MITSIS et al.: NONLINEAR MODELING OF THE DYNAMIC EFFECTS OF ARTERIAL PRESSURE AND CO> VARIATIONS

Fig. 9. The first-order frequency response functions tracked over 40 min
of data (6-min sliding data segments with 5-min overlap, total of around 30
segments); subject 091. Left: MABP; right: PETCOZ~

sliding 6-min data segments with a 5-min overlap. Time-fre-
quency contour plots of the first-order MABP and Prrco, FFT
magnitudes are shown in Fig. 9 for subject 091. The MABP fre-
quency response exhibits nonstationarity mainly in the low-fre-
quency range, below 0.04 Hz, and its values above that fre-
quency (where most of its power resides) are consistent with
respect to time. On the other hand, most of the power of the
Prrco, first-order frequency response resides below 0.04 Hz.
The Pgrco, frequency response is also more nonstationary
below 0.04 Hz and the locations of its spectral peaks vary more
with respect to time than their MABP counterparts.

Following the procedure introduced in [11] to examine the
nonstationarity of the second-order kernels, eigen-decomposi-
tion of the second-order MABP and Prrco, self-kernels re-
veals two significant eigenvalues, which account for over 95%
of the kernel power. Therefore, the corresponding eigenvectors
constitute the two significant second-order modes of the system.
The latter are tracked through time in the same manner as the
first-order kernels and the results are shown in Fig. 10 (sub-
ject 091). While most of the MABP modes power lies below
0.05 Hz, some power resides in higher frequencies too, espe-
cially for the second mode. The latter exhibits also more spectral
peaks between 0.01 and 0.1 Hz. On the other hand, most of the
power of the Prrco, modes lies below 0.02 Hz and very little
power resides over 0.1 Hz. The magnitudes of the two signifi-
cant eigenvalues of the MABP and Prrco, second-order ker-
nels are also tracked through time and the results are shown in
Fig. 11 (subject 091). Considerable variability can be observed
and, with the exception of the largest eigenvalue of the MABP
second-order kernel, the magnitude of the eigenvalues increases
with respect to time.

In order to quantify the nonstationarity of the system, a “vari-
ability index” over time for the kernel power at each discrete
frequency bin f; is computed. If p;(f;) denotes the power at
the jth data segment at f;, defined by the FFT magnitude of the
kernel, then the “variability index” can be defined as

w5 3 () =5
p(fi)

where N is the number of segments and p( f;) is the average of

p;(fi) over j for each frequency f;. The computed variability
indexes for the first-order kernels and second-order kernel

I(F) = an
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Fig. 10. Time-frequency plots of the two significant modes of the second-order
kernels (top: MABP, bottom:PET.go2 ), calculated from overlapping 6-min
segments with a 5-min overlap (total of around 30 segments), subject 091. Left:
first mode; right: second mode.

modes are shown in Fig. 12 for subject 091, both for MABP and
Prrco,. Itis evident that the linear MABP dynamics are very
consistent through time and that the second-order dynamics
are considerably more variable [Fig. 12 (left)]. It should be
also noted here that the variability of the nonlinear MABP
dynamics is generally reduced when Pgrco, is used as an
additional input. The variability of the first-order kernel is also
reduced in the low-frequency range to a smaller extent. The
Prrco, variability indexes are shown in Fig. 12 (right). The
second-order dynamics, especially the first mode dynamics, are
less nonstationary than their linear counterparts above 0.1 Hz,
while there are no significant differences below that frequency,
where most of their power resides.

The index of (11) is computed for the obtained first and
second-order dynamics over all subjects, in order to quantify
their inter-subject variability. The results are shown in Fig. 13.
With respect to the linear dynamics, the results agree with the
observations reported above based on Fig. 6, i.e., the variability
of the MABP first-order kernel is low over all frequencies,
while that of its Prrco, counterpart is higher and is slightly
increased with respect to the index obtained from one subject
only (Fig. 12-subject 091). On the other hand, the second-order
dynamics are evidently more variable among different subjects.
The computed indexes are increased for both modes of the
second-order MABP and Prrco, kernels over all frequencies,
compared to the indexes computed from subject 091 (Fig. 12).

The response of the model under simulated hypercapnic or
hypocapnic conditions is examined using Prrco, long pulse
stimuli in combination with shorter pulse MABP stimuli. A hy-
percapnic/hypocapnic pulse with a magnitude of 1 mm Hg is ap-
plied first (onset at 20 s and preserved until 420 s), followed by
a pressure pulse with a magnitude of 8 mm Hg applied between
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150 s and 300 s. The onset/offset times are selected to allow
sufficient settling time, based on the estimated kernel memo-
ries. The corresponding MCBFV responses for a typical sub-
ject/model are illustrated in Fig. 14.

The following observations can be made.

—  Hypercapnia increases MCBFV and hypocapnia re-
duces it, as expected.

—  The on-transient and off-transient responses to the
MABP step are distinct in waveform (i.e., not sym-
metric), and the magnitude of the off-transient peak
deflection is slightly larger than the corresponding
on-transient peak deflection.

—  The settling time of the hypercapnic on-response to
the MABP step is larger (around 50 s) than that of the
normocapnic or hypocapnic on-response (around 25 s).

—  The settling time for the off-response transient to the
MABP step is about the same (= 40 s) in all cases.
The on and off-responses to the Prprco, step are

roughly symmetrical in waveform, although the size
of the hypocapnic steady-state response is slightly
larger (20%).

IV. CONCLUSION

Spontaneous fluctuations of MABP and MCBFV have been
proven to be useful in studying the dynamic characteristics of
cerebral autoregulation [6]-[11]. Based on such measurements,
it has been suggested that slow pressure changes are attenuated
more effectively and that significant nonlinearities are present,
especially in the low-frequency range [9]-[11]. However, cere-
bral autoregulation is modulated by many different underlying
physiological mechanisms [1]-[3]. The reactivity of cerebral
vessels to CO5 is one such mechanism, arterial CO5 tension
being an important modulator of CBFV [1]. The study of the dy-
namic characteristics of the P,co,-CBFV relationship has been
limited until now and was mainly based on MCBFV changes
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Fig. 14. Model response to MABP pulse (solid line), combined MABP pulse
and hypercapnia (dotted line) and combined MABP pulse and hypocapnia
(dashed-dotted line).

induced by step changes in end-tidal CO [13]-[16]. However,
measurements of spontaneous breath-to-breath Prrco, fluctu-
ations can be used to study the dynamic effect of CO, reactivity
on autoregulation over the entire frequency range of interest, and
this effect was found to be substantial [19].

In the aforementioned study, the dependence of MCBFV
variations on MABP and Pgrco, fluctuations was as-
sumed to be linear whereas it has been suggested that the
MABP-MCBFV relationship exhibits significant nonlinearities
[9]-[11]. Moreover, the Prrco,-MCBFV relationship was
found to be strongly nonlinear hereby, as demonstrated by
the achieved prediction NMSEs when Pgrco, was used as
the model input (Table II, linear NMSE: 93.2%, third-order
NMSE: 71.7%); hence, the existing nonlinearities should not be
neglected. It was observed that the effects of both MABP and

Prrco, are characterized by a longer memory than previously
thought (MABP or Pgrco, changes occurring more than 1
min in the past affect MCBFV).

Comparison of the prediction error NMSEs achieved when
either MABP or Prrco, is used as the model input revealed
that MABP explains a greater fraction of MCBFV variability,
but Pgrco, explains a considerable fraction as well (prediction
NMSE values of 26.8% and 71.7%, respectively, for third-order
models). The contribution of the nonlinear terms was signifi-
cant in both cases, but more prominent in the case of Prrco,
models. When both MABP and Pgrco, were used as inputs,
a reduction of around 6% in the achieved prediction NMSE
was observed, compared to MABP models, with the output
prediction NMSE reduction due to the nonlinear model terms
being equal to 18%. Note that second-order models appear
from the observations to perform better when modeling the
MABP-MCBFV relationship in terms of prediction NMSE, as
reported also in [11], but third-order models appear to perform
better when Prrco, fluctuations are incorporated, implying a
higher order effect of Prrco, on MCBFV. Decomposition of
the model output terms into pressure and CO4 terms revealed
that the former account for around 60% of the total output
power, while the latter account for around 20%. The remaining
20% corresponds to the nonlinear interaction terms between
them, indicating a significant contribution of the interaction
terms, contrary to what was reported in [19] (Table IIl—average
NMSE reduction due to cross-terms is over 27%).

The spectral content of the first-order and total (i.e., second-
and third-order) residuals revealed that nonlinearities are active
in the low-frequency range (below 0.04 Hz), agreeing with [11].
By examining the residuals of the pressure terms, it was ob-
served that MABP terms act mainly above 0.04 Hz, whereas
CO3 and nonlinear interaction terms act mainly below 0.04 Hz.
This implies that the effects of MABP on MCBFV are mostly
linear (though there is a nonlinear component as well), while
the effects of CO5 are strongly nonlinear. More than 50% of the
CO4, contribution power is accounted for by the corresponding
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(self) nonlinear terms, as indicated by the corresponding mean
power ratio of nonlinear-to-linear output components, which is
equal to 1.18 (Table IV).

The linear MABP dynamics (first-order kernels) exhibit a dif-
ferentiating (high-pass) characteristic. Their form is not affected
by the inclusion of Pgrco, variations in the model, compared
to results obtained hereby and in previously reported studies
[11], except for a decrease in the MABP kernel power in the
low-frequency range. This is related to the fact that CO4 acts
mainly in the low frequencies. The negative undershoot ob-
served after the initial large value is indicative of an autoregula-
tory response and the high-pass characteristic implies that slow
MABP changes are regulated more effectively. The first-order
Prrco, kernels exhibit slower dynamics and an integrating
(low-pass) characteristic. The presence of a pure time delay on
the order of 3—4 s in the action of CO was associated to the high
variance observed for the (linear and nonlinear) kernel values
in the initial time lags. This agrees with the results reported
in [16], whereby a delay of 3.9 s was estimated based on the
MCBFV responses to hypocapnic Prrco, stimuli. The form
of the first-order MABP kernels was consistent among different
subjects (Figs. 6 and 13), while their Perco, counterparts ex-
hibited more variability (Figs. 7 and 13), a fact that was also
reported in [19] for the corresponding impulse responses. Re-
garding the second-order kernels, it was found that most of their
power lies below [0.04 Hz, 0.04 Hz] in the bi-frequency domain
and that they exhibit more variability among different subjects
than their first-order counterparts (Fig. 13).

The time-varying characteristics of cerebral autoregulation
were studied by tracking the first- and second-order frequency
responses (for both MABP and Prrco,) for sliding 6-min data
segments with a 5-min overlap. Significant nonstationarities
of no apparent pattern were observed, as demonstrated also
in [11] for the dynamics of the MABP-MCBFV relationship.
The second-order dynamics were found to be more variable
with respect to time than their linear counterparts for MABP
but not for Pgerco,, as shown in Fig. 12. Therefore, whereas
for Perco, the second-order dynamics appear to be less
nonstationary but more variable with respect to different
subjects, the MABP second-order dynamics appear to be both
more nonstationary and variable among different subjects. The
nonstationarity of the system, especially that observed for the
nonlinear dynamics, is reflected on the achieved out-of-sample
prediction NMSE. The average value of the latter over all
subjects is equal to 74.7 + 13.5%, while the linear component
of the model achieves an average out-of-sample NMSE of
64.4 £+ 14.2%, i.e., in most cases the nonlinear terms do not im-
prove the out-of-sample NMSE because of their fast-changing
characteristics. The out-of-sample prediction NMSE follows
roughly a x? distribution, its values ranging from as low as 20%
(i.e., comparable to in-sample NMSE) to as high as over 100%.

The form of the responses to MABP and Pgrco, step
changes demonstrated the autoregulatory characteristics of the
obtained models in a quantitative manner, but exhibit some
differences compared to previously reported results [15], [16],
where the CBFV responses to step increases in Pgrrco, were
found to be much slower than the responses to step decreases
in PErco,. This may be due to the fact that our model was
estimated based on small fluctuations of Pgrco, around its

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 11, NOVEMBER 2004

mean value, whereas in [15] and [16] large changes in Perco,
were induced.

The effect of the two major physiological signals modulating
CBF regulation, namely MABP and Prrco,, were assessed in
a multiple-input and nonlinear context. The results of this study
indicate the usefulness of the proposed methodology in mod-
eling nonlinear multiple-input systems and in quantifying the
linear and nonlinear effects of MABP and Prrco, on MCBFV
as well as the effect of their nonlinear interactions. The same
can be done for other exogenous variables affecting autoregu-
lation and may lead to a better understanding of the underlying
physiological mechanisms under normal and pathophysiolog-
ical conditions.
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