Computers in Biology
and Medicine

Computers in Biology and Medicine 37 (2007) 1600—1609

www.intl.elsevierhealth.com/journals/cobm

Determining a continuous marker for sleep depth

Musa H. Asyali®*, Richard B. Berry®, Michael C.K. Khoo®, Ayse Altinok¢

aDepartmemt of Computer Engineering, Yasar University, Kazim Dirik Mah. 364 Sok. No. 5, Bornova 35500, Izmir, Turkey
bDepartment of Medicine, University of Florida, Gainesville, FL 32611, USA
CDepartment of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
dDepartment of Ophthalmology, Ulucanlar Eye Education and Research Hospital, Ankara 06100, Turkey

Received 11 April 2006; received in revised form 20 February 2007; accepted 5 March 2007

Abstract

Detection and quantification of sleep arousals is an important issue, as the frequent arousals are known to reduce the quality of sleep and
cause daytime sleepiness. In typical sleep staging, electroencephalograph (EEG) is the core signal and based on the visual inspection of the
frequency content of EEG, non-rapid eye movement sleep is staged into four somewhat rough categories. In this study, we aimed at developing
a continuous marker based on a more rigorous spectral analysis of EEG to measure or quantify the depth of sleep. In order to develop such
a marker, we obtained the time—frequency map of two EEG channels around sleep arousals and identified the frequency bands that show the
most change during arousals. We then evaluated classification performance of the potential signals for representing the depth of sleep, using
receiver operating characteristic analysis. Our comparisons based on the area under the curve values revealed that the sum of absolute powers
in alpha and beta bands is a good continuous marker to represent the depth of sleep. Higher values of this marker indicate low-quality sleep

and vice versa. We believe that use of this marker will lead to a better quantification of sleep quality.

© 2007 Published by Elsevier Ltd.
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1. Introduction

Sleep fluctuates cyclically between two fundamentally dis-
tinct neurophysiological states known as Non-Rapid Eye Move-
ment (NREM) and REM sleep. Identification of sleep stages or
equivalently determining depth of sleep is important in the di-
agnosis of sleep disorders. Further, sleep studies revealed that
sleep deprivation, whether or not it is caused by sleep disor-
ders, results in daytime sleepiness which in turn increases risk
of injury and reduce job performance. Therefore, assessment
of sleep quality is a key issue for many purposes.

In order to assess sleep according to standard criteria [1],
it is sufficient to record electroencephalograph (EEG), elec-
tromyograph (EMG), and electrooculogram (EOG) signals.
In monitoring sleep, at least one set of central EEG leads,
placed according to international 10-20 systems of electrode
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placement [2], is used. The use of an additional set of leads in
the occipital area is recommended because alpha waves (EEG
activity in 7.5-12.0 Hz range) are best recorded there. The EOG
leads are positioned near the eyes to measure potential differ-
ences across each eyeball (positive anterior and negative inte-
rior). Eye movements result in potential difference fluctuations
that are detected in the EOG leads. Surface EMG leads, placed
usually in chin area, are used to assess muscle tone. The EMG
signal is especially useful in detecting REM sleep, which is
identified by low skeletal muscle tone, hence a low amplitude
EMG signal.

In sleep staging, NREM sleep is further divided into four
categories or stages in a subjective manner, on the basis of
visual inspection of sleep records. Stages 1 and 2 correspond
to light sleep whereas stages 3 and 4 correspond to deep or
slow-wave sleep. A given night of sleep is divided into usually
30-s-long periods called epochs. The predominant stage in a
given epoch names that epoch. This fragmented description
of depth of sleep may be suitable for some purposes but is
insufficient for many other purposes. In fact, division of depth
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Table 1

Description of frequency content of EEG signal and its relation to sleep analysis

Frequency band Range (Hz) Interpretation

0 (delta) 1.0-4.0 High power in 0 band corresponds to deep sleep

0 (theta) 4.0-7.5 Falling asleep (transition from stage 1 or 2 sleep to stage 3 or 4 sleep) is accompanied
by the occurrence of 6 waves

o (alpha) 7.5-12.0 Generally high power in o band corresponds to (but not so much as much as f)
alertness or awake state

Sleep spindles and K complexes (SS) 12.0-16.0 These signals occur mostly during stage 2 sleep and are generally considered as
artifacts in sleep analysis

p (beta) 16.0-25.0 High power in f# band corresponds to alertness or awake state

of sleep into four rough categories is a practical decision rather
than a physiological one, as it may be difficult to define and
identify too many sleep stages based on visual inspection. As
sleep arousals represent an unambiguous change in sleep state,
we hypothesized that through spectral analysis of EEG signals
during sleep arousals, we can come up with a marker that will
represent the depth of sleep accurately.

The organization of the paper is follows. In the remainder
of the introduction, we will describe EEG signal and its use in
sleep analysis in some detail. We will also discuss sleep arousals
and how they are identified in this section. In the methods sec-
tion, we will discuss our experiment design and data process-
ing techniques, including the spectral analysis of EEG. Next,
we will present the results of EEG spectral analysis around
sleep arousals and show how we utilize this information in
determining some candidate power signals to represent sleep
state changes. We will then discuss how we further evaluate the
classification performance of those signals by calculating their
arousal detection capability on whole night’s data by using the
receiver operating characteristics (ROCs) curve analysis.

1.1. Sleep and the EEG signal

The cerebral cortex generates electric potentials that can be
led off the skin covering the cranium and recorded as the EEG.
The fluctuations of the EEG potentials normally depend upon
the degree of alertness and vary in amplitude and in frequency.
Other than its use in sleep-analysis, as for example in the as-
sessment of the quality of sleep, in diagnosis, monitoring and
managing sleep-related disorders, EEG is also an important
clinical tool in general, as for example in epilepsy (localized or
generalized convulsion waves), in judging the degree of matu-
rity of the brain, in monitoring anesthesia, and in the diagnosis
of brain death [3,4].

The EEG typically has amplitudes from 10 to 100 pV and
a frequency content from 1 to 40 Hz. Signals of 10-30 uV are
considered as low amplitude and potentials of 80-100 uV are
considered as high amplitude. An alert adult displays a low-
amplitude EEG of mixed frequencies in the 16.0-25.0 Hz range
(beta), while a relaxed adult produces large amounts of sinu-
soidal waves, in the 7.5-12.0 Hz range (alpha), which is par-
ticularly prominent at the back of the head. In many disease
states, EEG activity tends to be either in the 1.0-4.0 Hz range
(delta) or the 4.0-7.5 Hz range (theta). Sleep is composed of a

periodic sequence of states during which the organism displays
physiological characteristics radically different from wakeful-
ness. These include both transient and long-term changes in
brain activity, body movement, cardiac function, and respira-
tion [5]. In the context of sleep analysis, we assume that the rel-
evant frequency content of the EEG signal is in the 1.0-25.0 Hz
range. In Table 1, we show the scheme that we adhere to for
the separation of this range into frequency bands and summa-
rize the use of corresponding signals in sleep analysis. There is
not a universally accepted standard for the definition of these
frequency bands. However, various schemes that appear in the
literature differ only slightly, hence we may assume that our
analysis will not be significantly influenced by the particular
choice of the frequency band definitions.

Sleep fluctuates cyclically between two fundamentally dis-
tinct neurophysiological states referred to as Non-Rapid Eye
Movement (NREM) and REM, or active sleep. NREM sleep is
further divided into four stages, namely stages I, II, III, and IV,
which are distinguished from each other principally on the ba-
sis of EEG. Stages 1 and 2 correspond to light sleep whereas
stages 3 and 4 correspond to deep or slow-wave sleep. A given
night of sleep is divided into usually 30-s-long periods called
epochs. The predominant stage in a given epoch names that
epoch. Staging of sleep is relevant for the study of sleep be-
cause each stage has a characteristic impact on respiration. Fur-
thermore, disease processes frequently alter not only the total
sleep time but also the relative amount of time spent in different
stages of the sleep.

Normal sleep progresses from light to deeper stages and re-
turns to light stages typically in the following order: 1 — 2 —
3 - 4 —- 3 - 2 — REM. These cycles, lasting 90—120 min,
are present in the first portion of the night and may repeat two
to four times over the night. The remaining of the night is spent
either in stage 2 or in REM sleep, with the REM episodes tend-
ing to increase in length. Periods of wakefulness during the
night may also be observed.

Wakefulness and REM sleep correspond to cortical activation
whereas NREM sleep corresponds to quiescence. Wakefulness
is distinguished from sleep by awareness of the environment,
capacity to develop meaningful responses to external stimuli,
and ability to perform complex, coordinated sensorimotor tasks.
In NREM sleep, mental activity is minimal, if any, and sen-
sorimotor responses to external stimuli are generally limited
to simple reflexes, such as withdrawal from pain. In addition,
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the threshold for eliciting response is increased compared to its
wakefulness level. However, sleep differs from other states of
diminished consciousness, such as anesthesia and coma, by the
ability to awake quickly in response to sufficient stimulation.

1.2. Sleep arousals

Transient arousals during sleep can lead to disruption of the
normal sleep and may cause excessive daytime sleepiness [6—8].
During NREM sleep, these brief arousals can be identified on
the standard sleep recordings (polysomnogram) and are charac-
terized by an abrupt increase in EEG frequency (suggestive of
an awake state). Arousals can be scored from either the central
or occipital derivation EEG [9].

According to Atlas Task Force of the American Sleep Disor-
ders Association (ASDA) [9] an EEG arousal is an abrupt shift
in EEG frequency, which may include theta, alpha and/or fre-
quencies greater than 16.0 Hz but not spindles, subject to the
following rules and conditions:

e Subjects must be asleep, defined as 10 continuous seconds
or more of the indications of any stage of sleep, before an
EEG arousal can be scored.

e A minimum of 10 continuous seconds intervening sleep is
necessary to score a second arousal.

e The EEG frequency shift must be 3 s or greater in duration
to be scored as an arousal.

e Arousals in NREM sleep may occur without concurrent in-
creases in sub-mental electromyographic (EMG) amplitude.

e Arousals are scored in REM sleep only when accompanied
by concurrent increases in submittal EMG amplitude.

e Artifacts, K complexes or delta waves are not scored as
arousals unless accompanied by an EEG frequency shift (as
previously defined) in at least one derivation. If such activity
precedes an EEG frequency shift, it is not included in reach-
ing 3-s duration criteria. When occurring within the EEG
frequency shift, artifacts or delta wave activity are included
in meeting the duration criteria.

e Non-concurrent, but contiguous, EEG and EMG changes,
which were individually less than 3s in duration, are not
scored as arousals.

e Intrusion of alpha activity of less than 3-s duration into
NREM sleep at a rate greater than one burst per 10s is not
scored as an EEG arousal. Three seconds of alpha sleep is
not scored as an arousal unless a 10-s episode of alpha-free
sleep precedes.

e Transitions from one stage to another are not sufficient of
themselves to be scored as EEG arousals unless they meet
the criteria indicated above.

From the above criteria, it is clear that the arousal scoring
criteria are based on the EEG signal alone with only one excep-
tion: scoring of arousal during REM sleep requires the presence
of a simultaneous increase in the EMG amplitude. The pres-
ence of bursts of alpha or theta activity in REM sleep EEG is a
common phenomenon; however, not all of these events reflect
physiological arousal from REM sleep. Therefore, to reliably

score arousal from REM sleep, we need the additional require-
ment of EMG amplitude increase. The principle of defining an
arousal as being 3 s or greater in duration is a methodological
decision rather than a physiological one, as the identification
of events of shorter duration may be difficult to achieve prac-
tically.

2. Methods
2.1. Experimental procedures

We recruited three normal/healthy and two obstructive sleep
apnea (OSA) subjects and carried out sleep studies to deter-
mine a continuous marker that would accurately represent the
depth of sleep. We conducted the experiments at the Sleep Lab-
oratory of the Long Beach Veterans Administration Hospital, in
Long Beach, California, USA. Written informed consent was
obtained from all subjects prior to their participation in the
study. Table 2 summarizes the profiles of our subjects. The last
column in the table reports the number of arousal segments
we analyzed from each subject. As sleep is fragmented by fre-
quent arousals following airway obstructions in OSA subjects,
we thought that the nature (i.e., changes in the EEG spectral
content) of the sleep arousals could be different in these sub-
jects compared to normal subjects. This is why we included the
two OSA subjects in the study.

Along with the spontaneous sleep arousals, we wanted to
have and analyze arousals of known time and cause. To this end,
we used a brief acoustic signal to cause transient arousals in
our sleep subjects. When the subject was in a stable sleep stage,
we remotely turned on speakers placed in the subject’s room
driven by a signal generator and exposed the subject to a sound
stimulus (beep signal) of 1000Hz for 5s. We electronically
marked starting time of the acoustic stimulus and also stored
this time marker information in our sleep data file. Throughout
the night, we repeated this procedure 10-15 times depending
on the sleeping condition of the subject. Early in the night, we
experimented with the level (amplitude) of the stimulus and set
it to a level which was high enough to briefly awake (or arouse)
the subject. This level varied between 60 and 90 dB, depending
on the subject.

During the experiments, we recorded the following physi-
ological variables or signals: partial pressure of alveolar (end
tidal) CO, (Pco,), arterial Oy saturation (Sao,), mouth pres-
sure (Pmask ), respiratory airflow, two EEG derivations, one cen-
tral (C3-A2) and one occipital (O1-A2), chin EMG, EOG, ECG

Table 2
Subject profiles

Subject Condition Age Weight (1bs.) Number of arousal
segments analyzed

1 Normal 35 185 55

2 Normal 27 180 132

3 Normal 41 118 98

4 OSA 52 190 70

5 OSA 45 152 110
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(electrocardiograph), and respitraces (for measuring rib-cage
and abdominal movements which indicate respiratory effort).
To measure airflow and mask pressure, we had our subject wear
a facemask, held in place by head straps. A pneumotacograph
was connected to the facemask for measuring airflow. Pco, was
sampled near the expiratory port of the mask by using a CO;
analyzer that detected the CO; content in the exhaled gas. Sao,
level was measured by pulse oximetry using a finger probe.

We sampled and converted these continuous signals into dis-
crete time by using a plug-in analog to digital converter board
(Dataq Instruments, Akron, OH) and its associated data ac-
quisition software (Windaq Software, Dataq Instruments). The
sampling rate and conversion resolution were 100 samples per
second per channel and 12bit per sample, respectively. Two
EEG, the EOG, and the EMG signals constitute the standard
set-up [1,2] for monitoring and staging sleep.

In order to convert the measured signals into physical units,
we made test or calibration recordings before each sleep study,
by supplying two-level calibration signals of known physical
units for each channel. We have calibrated the signals by simply
multiplying them with their respective calibration coefficients,
which are calculated as:

Calibration coefficient
High physical value — low physical value

- High calibration reading — low calibration reading
2.2. Spectral analysis of EEG and data processing

The analysis of EEG signal has been the subject of exten-
sive research [10,11], as EEG is an important clinical tool in
general, aside from its use in sleep studies. The EEG signal,
like most biomedical signals, is highly non-stationary, i.e., its
statistical characteristics change with time. In practice, the sta-
tionarity can artificially be obtained on a non-stationary signal
by dividing the signal into short consecutive segments. These
segments can assumed to be stationary and the well-known
spectrum analysis techniques like the Fourier transform can
be applied. This method, called short-time Fourier transform
(STFT), was first proposed by Gabor [12]. The basic idea of
STFT is that if we want to know what frequencies exist at a
particular time, we take a small/short segment of the signal
around that time and Fourier analyze it, neglecting the rest of
the signal. The length of the time interval and the way we weigh
the signal segment (for example, we may want to emphasize
the central region) are decided by the choice of the window
function. STFT (also known as spectrogram) is the prototype
of all other time—frequency distributions and has been an ex-
tremely powerful tool in many areas. The main advantage of
the STFT is that it is easy to obtain and interpret. The disadvan-
tage of STFT is that when we want to get better resolution in
time, we have to choose a shorter window and this causes poor
frequency resolution. On the other hand, using a long analy-
sis window will improve the frequency resolution, however, at
the expense of reducing/loosing time resolution and compro-
mising the assumption of stationarity of the signal within the
window.

We have utilized autoregressive (AR) power spectral density
(PSD) estimation to obtain time—frequency map of the EEG
signal. In this technique, as in the case of STFT, we take small
segments of the signal around the time of interest and assume
stationarity over those segments. Instead of FFT, we use AR
model fitting approach to estimate the spectrum of the signal
segments. With this technique, we utilize the simple yet pow-
erful idea behind the STFT and at the same time we over-
come frequency and time resolution tradeoff associated with the
STFT. With AR-PSD estimation, we eliminate the frequency
resolution problem, because after fitting an AR model to sig-
nal segments we can practically compute the spectrum at any
point/frequency we like. For a detailed discussion of AR model
fitting-based PSD estimation, we refer the reader to the excel-
lent references in the literature, such as [13-15].

There are various approaches for estimating the parameters
of the AR model. In this study, we used Yule—Walker Algorithm
which is intuitively simple and capable of producing good esti-
mates when a reasonable number of samples is available. There
are two variants of the Yule-Walker approach to estimate the
AR model parameters, namely autocorrelation and covariance
methods [16,17]. While estimating the autocorrelation of the
underlying signal for different lags, the autocorrelation method
assumes that data are zero padded from both ends whereas
the covariance method assumes no zero padding and uses only
available portion of the data. We have generated some ran-
dom data (white Gaussian noise) and inputted these data to an
AR system of known parameters and computed the response
(output) of the system. We then estimated the AR model pa-
rameters from the output data using the two techniques and
compared their performance by using “mean square error’” be-
tween the correct and estimated AR model parameters. After
extensive simulations of this sort, we concluded that the auto-
correlation technique produces slightly better estimates of the
model parameters compared to the covariance method. Further-
more, the autocorrelation method has some technical (compu-
tational) advantages over the covariance method. In autocor-
relation method, the “autocorrelation matrix” that needs to be
inverted to solve for the model parameters is Toeplitz and sym-
metric, and therefore positive semi-definite. This property of
the autocorrelation matrix leads to more stable solutions, i.e.,
estimation error variances for the model parameters are smaller.
Due to these considerations, we chose to implement the auto-
correlation technique to estimate the power spectrum of EEG.

We followed the procedure outlined below to obtain the
time—frequency map of EEG data segments around arousals.

1. Get a chunk or segment of EEG data of length 100 points
(i.e., 1-s long at 100 samples per second sampling rate)
around the time point of interest and detrend (i.e., remove
linear trends from) this data segment by subtracting the best-
fit line from it. The rationale behind detrending the data
before spectral analysis is that DC and linear shifts in data
are mostly due to artifacts such as movement rather than
real physiological events.

2. Find an AR model for the 1-s long EEG data segment: start
with a first-order AR model, estimate AR model parameters
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and compute the residual error sequence. If residuals are not
white, i.e., if there is a high correlation between the residuals
and the data, increase AR model order and repeat this step
until residuals are white or model order exceeds 15. We
imposed such a limit on the model order, because if we keep
increasing it without a bound, after a certain point we will
be attempting to model even the inherent noise in the data,
which is not desirable. (Besides, for a data of length 100
points, estimation of more than 15 model parameters will
be numerically troublesome.) We tested the residual error
sequence for whiteness by computing its autocorrelation and
finding out the percentage of the autocorrelation lags which
are outside the 95% confidence limits: :|:1.966'/\/N [18].
Here, N is the length and ¢ is the standard deviation of
the residual error sequence. If the percentage of the lags
outside the bounds is < 5%, we consider the sequence to be
white.

3. Compute the PSD estimate for the 1-s long EEG data seg-
ment from its AR model. The PSD estimate is calculated at
250 frequency points from 0 to 25 Hz, that is, we set the fre-
quency resolution as 0.1 Hz. By summing the values of the
PSD estimate at corresponding frequencies, we compute the
power in different frequency bands. For instance, to com-
pute the delta power, we sum the values of the PSD estimate
corresponding to the frequencies in 1.0—4.0 Hz region; for
the total power, the summation goes from 1.0 to 25.0 Hz.

4. Go to the next analysis point in time, which is 100 points
(1s) away. This way, i.e., by taking 1-s long non-overlapping
segments, we set our time resolution as 1 s.

We have carried out the EEG spectral analysis and other data
processing operations using in house code that we developed
under Matlab™ (Mathworks Inc., Natick, Massachusetts).

3. Results
3.1. Changes in the EEG spectral content during arousals

We have looked at the changes in EEG frequency content
for many spontaneous and acoustically induced sleep arousals
from the same subject and observed that their characteris-
tics are quite similar. We therefore did not differentiate the
type of arousal in the analysis and processed spontaneous and
acoustically induced sleep arousals all together. (The number
of arousals that we analyzed from each subject is reported
in Table 2.)

An expert sleep physician went through the whole night’s
sleep data and marked spontaneous arousals for three nor-
mal and two OSA subjects. Although the time of the acousti-
cally induced arousals was already known, the physician also
checked/confirmed whether there was really an arousal in agree-
ment with the ASDA definition of sleep arousal [9], since some-
times, depending on the depth of sleep, the acoustic stimulus
may not be strong enough to induce an arousal. We then focused
on the shifts in the power levels of different EEG frequency
bands around these arousal events in order to understand the
nature of these abrupt sleep state changes. For instance, Fig. 1
shows a sample arousal event for Subject 2 on the two EEG

channels. When we compute the powers in different frequency
bands, we obtain the graphs given in Fig. 2. The ASDA criteria
[9] suggest that the information in the SS band should be ex-
cluded in the arousal analysis, we therefore studied the changes
in delta, theta, alpha, and beta bands only.

Although the sample spectral analysis that we presented in
Fig. 2 was carried on 30-s long EEG segments, we used 13-
s long EEG signal segments corresponding to arousal events
in the rest of the analysis to assess the changes in the EEG
spectral content during arousals. These arousal segments are
formed by going backward 10s and forward 3 s, in reference
to the starting time of the arousals. The selection of pre- and
post-arousal event time intervals as 10 and 3's, respectively, is
again based on the ASDA criteria [9].

In order to compare pre- and post-arousal power levels in
different EEG frequency bands, we computed the average
changes listed in Tables 3—6. The convention we used to de-
fine the change in power levels is post- minus pre-arousal
power level; therefore, positive sign indicates an increase in
power and vice versa. The values reported in the tables are
in mean =+ standard error of the mean (SEM) format. Tables
3 (EEG1) and 4 (EEG2) and Tables 5 (EEG1) and 6 (EEG2)
report the changes in relative power (expressed as a percent-
age of total power) and absolute power levels, respectively.
The numbers in parenthesis are the p-values obtained us-
ing Student’s two tailed #-test indicating how significant the
changes in the mean power levels are. We observe that most
of the changes are significant (p < 0.05, a few exceptions are
indicated by the * marks in the tables); however, we should
look for consistency across different subjects and EEG chan-
nels in order to identify the best candidate signals for further
analysis.

3.2. Obtaining ROC curves for different criteria

When we analyze the information in Tables 3—-6, we note that
there is a consistent significant decrease in relative theta and
increases in relative beta, and absolute alpha and beta powers.
By consistent we mean that the observations are valid across
all subjects in both EEG channels. We therefore consider the
corresponding four power signals (relative theta and beta, and
absolute alpha and beta) for further analysis. In order to assess
the discrimination or classification capability of these different
candidate signals statistically, we have established their ROC
curves.

The ROC curve is a graphical representation of the trade off
between the false negative and false positive rates for every pos-
sible cutoff or threshold. By tradition, the plot shows the false
positive rate (1—specificity) on the x-axis and the true positive
rate (sensitivity or 1—the false negative rate) on the y-axis. In
this context, sensitivity is the proportion of true positives (i.e.,
arousals as determined manually by the physician) that are cor-
rectly detected by the criterion and specificity is the proportion
of true negatives (i.e., events that are correctly identified by the
criterion as non-arousals). Therefore, in this analysis, the in-
formation contained in the potential criterion signals over the
whole night (not only around arousals) is tested. The steps of
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EEG1 time series around arousal event at t = 5345 s.
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Fig. 1. EEG signals around a sample arousal event from Subject 2. Upper panel: EEG1 (central derivation). Lower panel: EEG2 (occipital derivation).

PSD of EEG1 around arousal event att = 5345 s.

"H\‘ ----- delta
150 Y — - - theta
! \ _
N [ alpha
2 100 : \ beta
I
50
K
5330
S Bttt delta
150+ II \\ — - - theta
~ I/ A \ —— - alpha
>:1 100 PR beta
RANEVAR ;
50 //A\\ e " ) /! \\\
N ) . o N cee o DT
o L ety L NI ST WL L
T L — T T T v A S T A
5330 5335 5340 5345 5350 5355 5360

Time (seconds)

Fig. 2. Time variation of power in different frequency bands during the arousal event of Fig. 1. Upper panel: EEG1 (central derivation). Lower panel: EEG2
(occipital derivation). (PSD: power spectral density.)

the ROC analysis that we have repeated for each different cri-

We have used a total of 500 threshold values/stops and plot
terion can be outlined as follows:

the ROC curve using the corresponding 500 combinations of

sensitivity versus specificity. Fig. 3 shows two sample ROC
1. Select suitable thresholds (based on our spectral analysis curves (one for each EEG channel) obtained from Subject 2.

results) and calculate the sensitivity and specificity foreach ~ Here, the criterion function is the absolute power in the beta
data set. band.

2. Change the threshold by a certain amount, and repeat the

calculation in step (1) to get new values of sensitivity and
specificity.

Instead of presenting many ROC curves obtained for different
criterions, EEG channels, and data sets, we choose to report
the area under the ROC curve value, which is simply known as
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Alpha

Beta

—5.213 £ 1.163 (< 0.001)
5.034 £0.715 (< 0.001)
3.679 £0.654 (< 0.001)
12.311 £1.561 (< 0.001)
2.047 £0.679 (< 0.05)

8.169 = 1.039 (< 0.001)
5.697 4 0.495 (< 0.001)
10.360 = 0.947 (< 0.001)
4.475 +0.844 (< 0.001)
4.925 +0.858 (< 0.001)

Table 3
Change (in percent) in relative power levels in different frequency bands from pre- to post-arousal averages for EEGI1 (central derivation)
Subject Frequency band
Delta Theta
1 4.123 £2.230 (=0.07)* —7.599 +£0.714 (< 0.001)
2 —6.923 + 1.045 (< 0.001) —5.252+£0.613 (< 0.001)
3 —11.038 = 1.251 (< 0.001) —9.203 £ 0.610 (< 0.001)
4 —14.508 £ 1.894 (< 0.001) —4.843 +0.754 (< 0.001)
5 —4.175 £ 1.380 (< 0.05) —7.056 & 0.545 (< 0.001)
Table 4

Change (in percent) in relative power levels in different frequency bands from pre- to post-arousal averages for EEG2 (occipital derivation)

Alpha

Beta

—4.336 4+ 0.724 (< 0.001)
1.177 £ 0.547 (< 0.05)
4.600 % 0.996 (< 0.001)
9.565 + 1.257 (< 0.001)
2.929 4 0.760 (< 0.001)

11.961 £1.104 (< 0.001)
4.489 £ 0.600 (< 0.001)
3.495 £ 0.963 (< 0.001)
3.419£0.841 (< 0.001)
5.195 £ 0.730 (< 0.001)

Subject Frequency band

Delta Theta
1 —1.326 £ 1.998 (=0.51)* —7.508 £ 0.639 (< 0.001)
2 —4.306 = 1.260 (< 0.001) —2.285+0.553 (< 0.001)
3 —6.625 + 1.400 (< 0.001) —6.339 £ 0.659 (< 0.001)
4 —4.179 + 1.296 (< 0.05) —10.067 £ 1.094 (< 0.001)
5 —2.806 % 1.366 (< 0.05) —10.946 + 0.741 (< 0.001)
Table 5

Change (in |1V?) in absolute power levels in different frequency bands from pre- to post-arousal averages for EEG1 (central derivation)

Alpha

Beta

10.649 + 2.140 (< 0.001)
30.963 + 6.954 (< 0.001)
6.396 + 1.301 (< 0.001)

15.431 £ 2.054 (< 0.001)
19.738 + 4.489 (< 0.001)

17.559 +2.215 (< 0.001)
37.047 £9.182 (< 0.001)
20.464 + 5.266 (< 0.001)
14.117 £ 4.169 (< 0.05)

27.746 + 5.780 (< 0.001)

Subject Frequency band

Delta Theta
1 81.137 £21.925 (< 0.001) 16.669 £ 4.248 (< 0.001)
2 79.718 £25.791 (< 0.05) 21.821 £5.959 (< 0.001)
3 —10.247 £ 11.653 (=0.38)* —8.381 4+ 2.480 (< 0.05)
4 4.061 £3.661 (=0.27)* 6.715 £2.000 (< 0.05)
5 68.047 £ 19.254 (< 0.001) 13.401 £2.770 (< 0.001)
Table 6

Change (in pV?) i

n absolute power levels in different frequency bands from pre- to post-arousal averages for EEG2 (occipital derivation)

Alpha

Beta

Subject Frequency band

Delta Theta
1 115.316 £ 38.524 (< 0.05) 30.121 £ 5.254 (< 0.001)
2 53.846 £9.224 (< 0.001) 22.496 £ 3.181 (< 0.001)
3 19.167 £ 5.569 (< 0.001) 4.817+1.178 (< 0.001)
4 13.017 £ 10.773 (=0.23)* —3.513 £2.034 (=0.09)*
5 131.192 £+ 40.233 (< 0.05) 7.490 +3.321 (< 0.05)

18.807 £ 2.460 (< 0.001)
30.100 £ 7.640 (< 0.001)
8.078 £ 0.923 (< 0.001)
8.747 £ 1.320 (< 0.001)
14.284 £ 1.630 (< 0.001)

46.449 4 3.640 (< 0.001)
36.430 £8.930 (< 0.001)
10.331 £ 2.504 (< 0.001)
6.586 £ 1.482 (< 0.001)

18.136 £ 2.812 (< 0.001)

the AUC, for each case. The AUC practically summarizes the
information in the ROC curve, i.e., the discriminative quality
of the criterion, in one number. Since there is a decrease in
relative theta power level during arousals (see Tables 3 and 4),
we inverted this signal before we use it as the classification
criterion.

In Tables 7 and 8, we present the AUC results obtained using
the four different criterions on EEG1 and EEG2. These results
indicate that the absolute alpha and beta power signals are the
best performing criterions on average. Therefore, as the next
logical step we consider a combination of these signals, i.e., the

sum of absolute power in alpha and beta bands as the criterion.
The AUC results obtained for this new criterion on both EEG
channels are given in Table 9.

4. Discussion and conclusion

The currently established method of scoring sleep (i.e., de-
termining sleep stages), is based merely on visual inspection of
the frequency content of the EEG signal. Other than being very
subject and scorer dependent, such a sleep state assessment
procedure can only produce four discrete sleep states, stages
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Fig. 3. Sample ROC curves for Subject 1 using absolute power in beta band obtained from EEG1 (left panel) and EEG2 (right panel). The AUC values are

0.9496 and 0.9891 for EEG1 and EEG2, respectively.

1-4. Such a categorization of sleep depth may be practical for
physicians but it is not suitable for adequate description of the
underlying physiological phenomenon. Further, for ease of pro-
cessing, sleep data for the whole night’s sleep are divided into
30-s long periods called epochs and the predominant stage in
a given epoch names that epoch. For instance, if the physician
or sleep technician identifies 20 s of Stage 3 sleep in an epoch,
the epoch is marked as Stage 3 completely. If the numbers of
different stage epochs are approximately equal on average, the
error introduced by this rough quantification may cancel out.
However, this assumption is not necessarily true. Additionally,
in modeling studies where the influence of sleep depth on the
respiratory control is investigated, a continuous signal repre-
senting level brain alertness is needed [19-21].

Therefore, we carefully looked at the frequency content of
EEG to produce a marker that will quantify the sleep state or
depth in a continuous and methodologically uniform manner.
We concentrated on the changes of EEG spectrum that oc-
cur during sleep arousals, as they correspond to unambiguous
changes in sleep depth. We developed a systematic approach
based on ASDA definition of sleep arousal [9] and AR model
fitting-based PSD estimation on short (1-s long) EEG segments.
For each frequency band, we established pre- and post-arousal
power levels based on 10-s pre-event and 3-s post-event time
averages, respectively. We performed the analysis on central
and occipital EEG derivations.

The information presented in Tables 3—6 helped us determine
which power signals could be better representative of changes
in sleep depth. Out of this analysis we have identified four
candidate signals or criterions, namely relative theta and beta,
and absolute alpha and beta power signals and used these as
criterions in the ROC analysis. This compressive analysis (see
Tables 7 and 8) revealed that the absolute powers in beta
(top performer) and alpha (second performer) bands are the

most effective criterions in terms of identifying sleep arousals.
When we combined these two functions, we obtained the results
shown in Table 9. The AUC results for the combined criterions
(i.e., the sum of absolute powers in alpha and beta bands) in-
dicate that there is a performance increase, with respect to the
use of absolute alpha or beta alone, for both EEG channels.

These findings led us to propose the sum of absolute pow-
ers in alpha and beta bands as the marker for depth of sleep.
Lower values of this marker correspond to deeper sleep and
conversely higher values indicate lighter sleep or brain activa-
tion. Our proposed marker is very practical as it only requires
one EEG channel to compute and is totally non-invasive. As
we have used information obtained from both normal and OSA
subjects while developing our marker, we can stipulate that it
can be used on any subject to accurately describe the sleep or
alertness status. We also observe that either of the two EEG
channels we used in this study is suitable and enough to obtain
our proposed marker. However, in order to address the issue of
standardization and identify the best candidate channel for con-
tinuous quantification of sleep depth, further studies involving
more than two EEG channels are needed.

Using our proposed sleep depth marker, carrying out an anal-
ysis to determine the whole night’s sleep quality would be very
practical and simple compared to tedious manual/visual analy-
sis. All we need to do is to process one EEG channel to obtain
its second-by-second spectral content and compute our pro-
posed marker as the sum of absolute powers in alpha and beta
bands. Then, many interesting variables can be produced from
this continuous marker of sleep depth. For instance, the aver-
age of this marker over the whole night or certain periods could
be used to assess the quality of sleep. The only critical point
about our proposed marker is that the use of absolute powers
requires firm calibration of EEG recordings, for accurate com-
parison across different subjects or recording platforms.
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Table 7

AUC values obtained using the four different criterion functions on EEGI1 (central derivation)

Subject Classification criterion
Relative theta Relative beta Absolute alpha Absolute beta
1 0.7048 0.7555 0.7367 0.9496
2 0.5948 0.6962 0.7825 0.8696
3 0.7402 0.7553 0.5805 0.8300
4 0.5582 0.6563 0.8252 0.7856
5 0.7135 0.5790 0.7520 0.8001
Mean + SEM 0.6623 £ 0.0360 0.6885 4 0.0332 0.7354 +0.0416 0.8470 4 0.0294
Table 8

AUC values obtained using the four different criterion functions on EEG2 (central derivation)

Subject Classification criterion
Relative theta Relative beta Absolute alpha Absolute beta
1 0.7737 0.8208 0.8729 0.9891
2 0.4601 0.5723 0.8376 0.8527
3 0.5941 0.5408 0.5608 0.7073
4 0.7177 0.6284 0.6721 0.6024
5 0.7690 0.5954 0.7146 0.7782
Mean + SEM 0.6629 £ 0.0602 0.6315 4 0.0494 0.7316 £ 0.0567 0.7859 4 0.0654
Table 9

AUC results when the classification criterion is the sum of absolute powers in alpha and beta bands for EEG1 and EEG2

Subject Classification criterion: absolute alpha + beta
EEGI1 EEG2
1 0.9250 0.9618
2 0.8749 0.9001
3 0.8301 0.7035
4 0.8459 0.6975
5 0.8321 0.8120
Mean + SEM 0.8616 £0.0178 0.8150 £ 0.0525
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