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Abstract—Using the Volterra—Wiener approach, we em-
ployed a minimal model to quantitatively characterize the
linear and nonlinear effects of respiration (RCC) and arterial
blood pressure (ABR) on heart rate variability (HRV) in
normal controls and subjects with moderate-to-severe
obstructive sleep apnea syndrome (OSAS). Respiration, R—
R interval (RRI), blood pressure (BP) and other polysom-
nographic variables were recorded in eight normal controls
and nine OSAS subjects in wakefulness, Stage 2 and rapid
eye-movement sleep. To increase respiratory and cardiovas-
cular variability, a preprogrammed ventilator delivered
randomly timed inspiratory pressures that were superim-
posed on a baseline continuous positive airway pressure.
Except for lower resting RRI in OSAS subjects, summary
statistical measures of RRI and BP and their variabilities
were similar in controls and OSAS. In contrast, RCC and
ABR gains were significantly lower in OSAS. Nonlinear
ABR gain and the interaction between respiration and blood
pressure in modulating RRI were substantially reduced in
OSAS. ABR gain increased during sleep in controls but
remained unchanged in OSAS. These findings suggest that
normotensive OSAS subjects have impaired daytime para-
sympathetic and sympathetic function. Nonlinear minimal
modeling of HRV provides a useful, insightful, and compre-
hensive approach for the detection and assessment of
abnormal autonomic function in OSAS.

Keywords—Autonomic nervous system, Heart rate variabil-
ity, Baroreflex, Respiratory sinus arrhythmia, Volterra—
Wiener model, Minimal model, Closed-loop control.

INTRODUCTION

Obstructive sleep apnea syndrome (OSAS) is char-
acterized by repeated episodes of upper airway occlu-
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sion during sleep. Each occlusion episode results in
increasing asphyxia until transient arousal restores
upper airway patency. The cardiovascular conse-
quences of these events are profound, and chronic
exposure to obstructive apnea constitutes an indepen-
dent risk factor for systemic hypertension, heart fail-
ure, myocardial infarction, and stroke.>3>3° Abnormal
autonomic control has been suggested as the common
factor linking OSAS to these cardiovascular dis-
cases 213437

Recently, we introduced a new noninvasive ap-
proach for quantitatively assessing autonomic function
in OSAS under different sleep—wake states. This
method is based on a closed-loop minimal model of
heart rate variability (HRV) that assumes HRV to be
generated via two functional mechanisms: direct
respiratory—cardiac coupling and the arterial barore-
flex.!” This model was able to capture the most salient
features of the cardiorespiratory dynamics under
study, but was unable to account for a significant
residual fraction of the total variance, particularly
dynamics at frequencies below 0.1 Hz. We hypothesize
that this residual variance was the consequence of the
assumption of linear dynamics in our original model,
and that the discrepancy can be largely eliminated by
extending the model to incorporate simple nonlineari-
ties in and interactions between the model inputs.

For small fluctuations about a mean operating
point, linear system identification methods provide a
convenient and effective means for characterizing a
physiological system. However, in many situations,
spontaneous or induced physiological fluctuations can
be large enough that nonlinear dynamic effects cannot
be ignored. Nonlinear dynamics can lead to phenom-
ena such as limit cycles, threshold, and saturation ef-
fects, which are commonly observed in physiological
systems.*® Experimental studies have also demon-
strated nonlinear interactions between the sympathetic
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and parasympathetic nervous system with respect to
heart rate control.'*?3 As such, several recent studies
have employed nonlinear dynamical theory and fractal
analysis to characterize HRV.?* Fractal analysis has
been shown to be useful for purposes of risk stratifi-
cation in patients with impaired left ventricular func-
tion following myocardial infarction, providing better
prediction of mortality in this patient population.'®
However, one limitation of these univariate analyses is
that they provide information of only the net effects of
the many influences that give rise to HRV. In contrast,
the “input-output” minimal model approach we have
adopted yields greater insight into how the main
physiological mechanisms that contribute to HRV are
altered in OSAS. As well, this kind of model can be
readily adapted for investigating conditions under
which rapidly changing dynamics may be important,
such as during transient state changes during sleep.’

The approach outlined in this paper employs a
second-order nonlinear time-invariant dual-input rep-
resentation, based on the Laguerre expansion tech-
nique (LET) for Volterra-Wiener kernel estimation.”®
The advantages of this technique and its applications
to modeling renal blood pressure-flow properties as a
single-input single-output system were demonstrated
by Marmarelis and colleagues.”’ The extension of the
Laguerre expansion technique to the estimation of a
dual-input HRV model was introduced by Chon et al.®
In this study, we propose a model similar in structure
to Chon’s to determine how respiratory—cardiac cou-
pling and the baroreflex control of heart rate are al-
tered by OSAS during wake and sleep.

In summary, the specific objectives of this study are:
(a) to quantify the nonlinear dynamics involved on the
modulation of HRV by changes in respiration and
blood pressure; (b) to determine the significance of
these nonlinear interactions on the overall variability
of the heart rate; and (c) to assess how these nonlinear
dynamics are affected by OSAS and changes in wake—
sleep state.

METHODS

Experimental Protocol and Instrumentation

Nine untreated patients with moderate-to-severe
OSAS (apnea-hypopnea index = 44.1 + 2.8 h™") and
eight normal controls underwent overnight polysom-
nography, preceded by application of the test protocol
(described below) during wakefulness. Age was not
significantly different between the two groups; how-
ever, body-mass index was significantly higher in the
OSAS patients (p < 0.05). All subjects were normo-
tensive and were free of diabetes, significant cardiac
arrhythmia, congestive heart failure, and lung disease.

Informed consent was obtained prior to each study.
The study protocol was approved by the USC Insti-
tutional Review Board.

Arterial blood pressure (ABP) was monitored con-
tinuously from one wrist using a noninvasive arterial
tonometer (Model 7000, Colin Medical Instruments,
San Antonio, TX). Electrocardiogram (ECG), arterial
oxygen saturation (S,0,), central and occipital elec-
troencephalogram, chin electromyogram, left and right
electrooculogram, and nasal thermistor were also
monitored. All signals were sampled at 200 Hz.

Each subject was connected via nasal mask to a
computer-controlled bilevel pressure ventilator (S/T-D
30, Respironics, Pittsburgh, PA). Measurements of
mask pressure and airflow were obtained from the
detachable control panel of the S/T-D ventilator.
Airflow was electronically integrated in both inspira-
tory and expiratory phases to obtain the instantaneous
lung volume (V) relative to passive functional residual
capacity. We determined in initial tests that the tidal
volumes derived from the ventilator volume monitor
were highly correlated (r > 0.97, p = 0.0001) with
corresponding readings obtained from a reference
pneumotachometer (Model 3700, Hans Rudolph,
Kansas City, MO). A chinstrap was used to keep the
mouth closed during sleep, preventing leakage or
inspiration through the mouth. Continuous monitor-
ing of mask pressure enabled the detection of abrupt or
unusual changes in baseline pressure that could indi-
cate leaks through the mouth.

A minimal continuous positive airway pressure
(CPAP) of 2-3 cm H,0 was applied during wakeful-
ness in the control group in order to overcome the
additional resistance to breathing presented by the
mask and respiratory apparatus. In the OSAS patients,
the levels of CPAP applied ranged from 8§ to
15 ecm H,O, depending on what was necessary to
eliminate obstructive apnea and significant hypopnea
during sleep. Obstructive apneas were identified as
episodes of zero airflow lasting 10 s or more, and
hypopneas as periods >10 s duration in which the
nasal thermistor signal was reduced to <50% of its
magnitude during unobstructed breathing and S,o,
decreased by >4%. Thus, in the OSAS subjects,
obstructive apneas and hypopneas were prevented
from occurring throughout the night.

During the 10-min test protocol, the ventilator was
set to assist-control, bilevel ventilation mode. Under
this condition, the subject was allowed to breathe at his
own respiratory rate, but the inspiratory pressure was
switched randomly breath-to-breath between the
CPAP level and CPAP + 5 cm H,O. Expiratory pres-
sure was kept constant at the CPAP level. Using this
experimental setup, tidal volume was modulated
breath-to-breath without the need for voluntary
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control by the subject. This test protocol, which al-
lowed the ventilatory pattern of each subject to contain
a broadened spectrum of frequencies, was designed to
enhance the accuracy and reliability of subsequent
parameter estimation from the recorded data.*
Following one or two trials to minimize subject
anxiety during wakefulness, the test protocol was ap-
plied at least three times in each sleep—wake state. Test
sequences which elicited arousals or outright awaken-
ing were terminated, and the protocol was not repeated
until the subject returned to a stable sleep state. Sleep
stages were scored according to conventional criteria.*

Data Analysis

From each 10-min test segment, R—R intervals
(RRI), and systolic blood pressure (SBP) and diastolic
blood pressure (DBP) values were estimated beat-to-
beat from the ECG and ABP signals and resampled at
2 Hz using the Berger algorithm.? Very low-frequency
oscillatory behavior or baseline drift was observed in
some of the datasets. These ultra low-frequency non-
stationarities were removed by detrending the datasets
prior to applying spectral analysis and modeling.

The Model

RRI, V;, and SBP were assumed to be interrelated
through a closed-loop control scheme consistent with
the underlying physiology, as had been previously
proposed.'?* We assumed that respiration influences
RRI directly through autonomic respiratory—cardiac
coupling (RCC). The latter is believed to be the result
of central respiratory entrainment of the cardiovagal
motorneurons in the medulla as well as vagal feedback
from the pulmonary stretch receptors.'” Respiration
also affects RRI indirectly through changes in intra-
thoracic pressure, which are translated into changes in
blood pressure that subsequently act on the arterial
baroreflex (ABR). The totality of these respiratory
influences on HRV constitutes what is commonly
termed “respiratory sinus arrhythmia.”'® The “closed-
loop” nature of the control scheme derives from the
fact that changes in RRI lead to changes in cardiac
output, which, in turn, influence blood pressure. Apart
from intrathoracic pressure changes and changes in
cardiac output, fluctuations in blood pressure can also
arise from other sources of spontancous variability,
such as sympathetically driven variations in peripheral
vascular resistance.

The focus of this study was limited to the portion of
the closed-loop model that accounts for HRV. The
model, illustrated schematically in Fig. 1, assumes that
fluctuations in heart rate are produced through six
functional mechanisms. The first five sources corre-

Vy(n) :x
* Hx
Other
influences
Hxx Weg(n)
: Hxu " ARRI(n) : y
+——| Huu
ASBP(n) :u Hu
FIGURE 1. Schematic block diagram of the dual-input sec-

ond-order model of HRV. Fluctuations in RRI (HRV) are as-
sumed to be produced by: a neural coupling of respiration
and RRI (Hx); an arterial baroreflex component (Hu); nonlinear
(second-order) effects of respiration (Hxx) and blood pressure
(Huu) on RRI; and nonlinear (second-order) interaction of
respiration and blood pressure on RRI (Hxu). Wgg(n)
encompasses all other influences not explained by the model.
spond to autonomic-mediated mechanisms involved in
the variability of the heart rate: a component with
linear dynamics representing the neural coupling of
respiration and heart rate (Hx); a linear arterial
baroreflex (ABR) component (Hu); two nonlinear
compartments describing the second-order effects of
respiration (Hxx) and blood pressure (Huu) on heart
rate; and a third nonlinear compartment characterizing
multiplicative interaction of respiration and blood
pressure on heart rate (Hxu). The last source (Wyrry)
encompasses all other influences not explained by the
other linear and nonlinear components.

The nonlinear dynamic relationship between the
two inputs x(¢) (V) and u(f) (ASBP) , and the system
output y(7) (ARRI) was represented by a second-order
time-invariant Volterra—Wiener model, represented by

the following equation:
X(t=1=D)+ T ky(t)x(t—7—D,)

TZk
=0

Tzijz:kW (t1,72)x(t—71 — Dy)x(t—12— Dy)

M

T1= 0‘[2
+T2zzklm 71772 Z_Tl DU)M([—TZ_DLI)
=01,=
TzszW 11,72)Xx(t—11 — Dy)u(t—1,—D,,)
=01,=
+WRR](Z‘)

(1)

The above equation assumes a discrete time base ¢ with
sampling interval 7 (= 0.5s). The parameter M
determines the extent of the system memory. The linear
kernels k, and k, represent the linear contribution to
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the output of each single signal. The nonlinear self-
kernels k., and k,, represent the quadratic contribu-
tion of each input signals. The cross-kernel k., de-
scribes the effect on the output resulting from the
second-order nonlinear interaction of the two input
signals. The second-order self-kernels are symmetric
functions of their arguments and the second-order
cross-kernels are asymmetric functions of their argu-
ments.

In Eq. (1), D, and D, are the delays between the
output (ARRI) and the two inputs (AV and ASBP ,
respectively) associated with the corresponding mech-
anisms; and the signal Wggy(f) represents the vari-
ability of RRI not explained by the model. Causality
constraints were also imposed upon the model to ac-
count for the closed-loop structure of the baroreflexes.
A delay of at least D, = 0.5s was inserted in the
baroreflex dynamics. Previous studies have suggested
that changes in heart rate are synchronous with neural
respiration but precedes mechanical inspiration.'*!7-*
Therefore, the nonlinear model was allowed to adopt
negative values of the delay D,. In order to accom-
modate this effect, the RRI signal was delayed before
the estimation. Shifting the estimated RCC first- and
second-order kernels back in time later compensated
for this negative delay.

A linear version of the model (which includes only
the first two summations in Eq. (1) was also estimated,
in order to determine the improvement in predictive
ability of the model when the nonlinear contributions
are taken into account. A description of the Laguerre
expansion of the kernels technique applied in the
present work for the estimation of our proposed non-
linear model is presented in the following section.

It is imperative to note that the system under study
operates in a closed-loop, so that changes in heart rate
can subsequently affect SBP through changes in car-
diac output. In general, this condition, in which the
model input is dependent on its output, can lead to
erroneous parameter estimates when conventional
analysis techniques are employed. To circumvent this
problem, we formulated the model equations in the
time domain so that “‘causality’” constraints could be
imposed: i.e., the model output was constrained
mathematically to be dependent on only past values of
the inputs. Previous studies have employed similar
methodologies that essentially allow the closed loop to
be “opened”” computationally.'?’

Model Estimation and Optimization

The traditional and most straightforward technique
for multiple-input system kernel estimation has been
the cross-correlation technique proposed by Lee
and Schetzen,” which performs a Gram-Schmidt

orthogonalization of the Volterra series expansion with
respect to Gaussian white noise. The simplicity of this
method has facilitated its application to a wide variety
of physiological systems. However, it requires long
data records, strict whiteness of the input, and a heavy
computational burden associated with the estimation
of higher-order kernels. An improved version of the
algorithm based on the Laguerre expansion of the
kernels?® alleviates most of the deficiencies inherent in
the cross-correlation technique. In particular, the La-
guerre expansion technique (LET) does not require
strict whiteness of the input since Gram—Schmidt
orthogonalization with respect to Gaussian white noise
is not utilized. Instead, unknown Laguerre expansion
coefficients are estimated using least-squares minimi-
zation. This leads to increased estimation accuracy in
the presence of noise, reduces the requirement for long
data records, and allows accurate kernel estimation
when the input deviates from the theoretical require-
ment for white-noise stimuli.”® The Laguerre functions
have been suggested as an appropriate orthonormal
basis, owing to their built-in exponential term that
makes them suitable for modeling physical systems
with asymptotically exponential relaxation dynamics.
The Laguerre expansion technique uses the orthonor-
mal set of discrete time Laguerre functions b;(t) to
discretize and expand the system kernels of the second-
order Volterra model as follows:

S1
T) = Z Cx1 (]Y) j\” + Z Cul (]u ]u

]ll
2(11,12) Z Z ca(fersjx2)bjct (11)bjxa (12)
Jxl=1jx2=1
52 s2 (2)

+ Z Z Cu2 ]ula/uZ)bjul(Tl)bju2(f2)

/ul 1 /u2 1

+ZZCW’(/’C7]M jx Tl) ]u(TZ)

Jx=1ju=1

In Eq. (2), {C.\‘l(')aCXZ(')»Cul(')»CuZ(')»Cxu(')} are the
sets of the unknown expansion coefficients, which are
to be estimated from the input—output data; b;(t) de-
notes the jth order orthonormal discrete time Laguerre
function; S1 and S2 are the number of Laguerre
functions used to model both the linear and nonlinear
dynamics corresponding to the interaction between the
two inputs and the output. The Laguerre functions

basis is defined as:
() ()
k 3)

by(x) =1

1/22

x o K(1—a)f, >0
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In a more efficient implementation, b;(t) can be com-
puted recursively as follows:

bo(t) = /or (1 — o)

bi(t) = Vabj(t = 1) + Vb1 (1) = bii(t = 1), j>0

(4)

The parameter (0 < o < 1) determines the rate of
exponential decline of the Laguerre functions. This
parameter is selected based on the kernel memory
length and the number of Laguerre functions used for
expansion, so that all the functions decline sufficiently
close to zero by the end of the kernel.?® The memory
length of the kernels was fixed to 50 s (100 samples),
based on our previous results obtained from applying a
linear model to the same data sets.'”"'® By inserting Eq.
(2) into Eq. (1), the second-order Volterra model thus
becomes:

S1
l) = Z Cxl1 (iX)V/Y + Z Cul (]u W/u )
Jjx=1

Jju=1

S1 S1

+ Z Z CxZ(jxl7.jx2)vj.xl(t)vjx2(t)

/'xlfl j»czfl

(5)

+ Z Z CuZ(/uleuZ W/ul( )W]LIZ(I)

jul 1]u2
+ Z ch(]w]u vj’( W]u( )

jx=1 ju=

where v;(r) and w;(7) are the discrete convolutions of
the inputs with Laguerre functions and denoted as the
“key variables”:

wi(t) :szj(f)u([ —1-D,)

=0

The unknown expansion coefficients {cyi(),cx("),
cut(+), ca(+), cxu(-)} can be estimated by generalized
least-square fitting using the time-series y(¢), v;(¢) and
wi(1).

To select the model with the minimum number of
parameters (minimal number of Laguerre functions,
and hence, expansion coefficients) that would best fit
the observations, the following optimization procedure
was applied. For a given set of number of Laguerre
functions {S1, S2} and delays {D,, D,}, the expansion
coefficients were calculated for all combinations of
{S1, S2} ranging from 1 to 7, with D, ranging from —2
to 1 s (corresponding to the RSA delay) and D,, from
0.5 to 2 s (corresponding to the ABR delay). The

“optimal model” was selected by searching for the
global minimum of the minimum description length’'
over the entire grid of values for {S1, S2} and the
delays {D,, D,}. Model adequacy was checked by
testing for whiteness of the residuals and the lack of
correlation between the corresponding inputs and
residuals.®®> The normalized mean squared error
(NMSE) and coherence function served as indicators
of the prediction accuracy. The optimization proce-
dure was performed for every set of data.

Once the Laguerre expansion coefficients for the
optimal candidate model were estimated, the linear
impulse response corresponding to the two mecha-
nisms represented in our model (RCC and ABR) were
related to the linear self-kernels as follows:

hrece(1) Z cx1 ()b
hagr (1) Z cur (/)b

Similarly, the second-order self- and cross-kernels
were estimated from the expansion coefficients as fol-
lows:

(7)

Sl S1

Z Z ca(fvtsJx2)bict (11)bjna (12)

Jjxl=1jx2=1
S2 52

Z Z CuZ(].ulathZ)bjul(Tl>bju2(T2) (8)

/ul—l /u2—1

ZZCW(IYJL: ]Y Tl) /u(fz)

Jx=1ju=1

kxx(’“ 5 TZ) -

kuu(Tl 5 TZ) =

\u T17T2

The corresponding linear version of the models were
also optimized using the same procedure described
above, but allowing the number of Laguerre functions
employed {S1, S2} to range from 1 to 15.

Statistical Analysis

To facilitate statistical comparison, compact de-
scriptors were derived from the model impulse re-
sponses. One of these is the impulse response
magnitude (IRM) or the difference between the maxi-
mum and minimum values of linear kernel. In order to
compare the nonlinear dynamics of the system, the
Kernel Magnitude (KM), defined as the difference
between maximum and minimum values of the esti-
mated second-order kernels was computed.

Each estimated parameter was subjected to two-way
repeated-measures analysis of variance (subject
group X sleep—wake state). Post-hoc multiple pairwise
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comparisons (Student—Newmans—Keuls test) were
carried out if statistical significance was indicated.

Physiological Interpretation of Nonlinear HRV
Dynamics

One of the limitations of the Volterra—Wiener ap-
proach to system identification is that the higher-order
kernels do not readily lend themselves to physiological
interpretation. To derive greater insight into the
dynamics characterized by the estimated second-order
kernels and what they mean in terms of the underlying
physiological mechanisms, we performed the following
simulations.

It has been previously observed that the frequency
response relating respiration to RRI is dependent on
tidal volume.'® In order to test the hypothesis that the
second-order RCC component of our model reflects
this observation, we convolved the average Hx and
Hxx with a chirp signal (frequency range 1-45 cycles/
min) of fixed amplitude of V't liters. The FFT of the
estimated RRI response was then derived to represent
the frequency response of the RCC component at the
given tidal volume of V't liters. The simulations were
repeated for various Vet values (0.5, 1, 2, and 3 L). We
anticipated that without the Hxx component, the fre-
quency response (normalized to the tidal volume level)
would be independent of Vy. However, with Hxx,
there should be V't dependence, so that as Vt in-
creases, RCC gain increases.

It is also well established that the steady-state ABR
response is not linear, showing saturation at higher
blood pressure levels. In order to test the hypothesis
that the second ABR component of our model reflects
this observation, we convolved the average Hu and
Huu with step functions of different magnitudes (1-
5 mmHg). We anticipated that without the Huu com-
ponent, the steady-state ABR response should be lin-
ear with respect to the step magnitudes; while by
including Huu a saturation effect should be observed.

Finally, it has been shown that neck suction when
applied during inspiration produces smaller increases
in RRI than when applied during expiration.!' This
suggests that there is a respiratory modulation of ABR
gain. In order to test the hypothesis that the second-
order cross-kernel of our model reflects respiratory
modulation of ABR, we performed the following
simulation. The average Hxu was convolved with a
semi-sinusoidal tidal volume pattern (1 L) of 6 s peri-
od, and a positive pulsed SBP signal (0.5 s pulse width,
magnitude 30 mmHg) triggered at different times
along the inspiratory/expiratory cycle. We anticipated
that the increase in RRI following each SBP pulse
should be different, depending on the timing of the
pulse within the respiratory cycle.

RESULTS
Sample Time-Series

A representative segment of data obtained from one
of the OSAS subjects is displayed in Fig. 2. A CPAP
level of approximately 7 cm H,O was applied during
sleep. The randomly timed increases in inspiratory
pressure delivered during the test procedure can be
observed in the top panel. The consequent variability
imposed on the breathing pattern is quite evident in
both tidal volume and breath duration. These respi-
ratory variations, in turn, lead to corresponding fluc-
tuations in SBP and RRI. The occurrence of
spontaneous fluctuations in SBP and RRI largely
independent of the respiratory changes (e.g., at ~40 s)
should be noted.

Summary Statistical Measures

Due to the heavy instrumentation imposed on the
subjects, total sleep time was spent primarily in Stage 2
and rapid eye-movement (REM) sleep. Thus, com-
parisons of the results were made across only three
states: wakefulness, REM sleep, and non-REM Stage 2
sleep. The means and standard errors (SE) of the car-
diovascular variables in both subject groups are shown
in Table 1. RRI was significantly lower in OSAS pa-
tients relative to controls (p < 0.005), and increased
from wakefulness to sleep (p < 0.02) in both groups.
There was no group or state difference in any of the
other summary statistical measures of HRV and blood
pressure variability. Average minute ventilation de-
creased significantly during sleep in both control sub-
jects (awake: 9.0 £ 0.5 L/min, REM: 7.4+ 0.4 L/min,
and Stage 2: 7.2+ 0.3 L/min) and OSAS patients
(awake: 9.9+ 0.6 L/min, REM: 7.5+ 0.4 L/min, and
Stage 2: 6.8+ 0.5 L/min), but was not different be-
tween groups.

Linear and Nonlinear Model Prediction Accuracy

Model accuracy was evaluated by computing the
output prediction normalized mean square error
(NMSE). The average NMSE achieved using only the
linear (first-order) part of the model was 59.3 + 3.2%
for the control group and 64.5 + 1.9% for the OSAS
group. The average NMSE achieved using the second-
order model was 32.2 + 3.2% for the control group
and 34.2 + 2.4% for the OSAS group. Thus, extend-
ing the linear model to include second-order nonlin-
earities led to a halving of NMSE. This is further
illustrated in the frequency domain (Fig. 3): here, the
average spectra of the measured RRI signal (solid line)
along with the first-order (dotted line) and second-



Cardiac Autonomic Function in OSAS

15 T T

1431

M

Pmask (cmH,0)

0 50 100

150 200 250

° bl /\MM

ILMMWW

0 50 100

150 250

120

100

SBP (mmHg)

1000 T T

800 |

RRI (ms)

600 : :

0 50 100

150 200 250

Time (s)

FIGURE 2. Sample trace of the cardiorespiratory signals recorded during a test procedure in an OSAS subject during sleep. The
mask pressure tracing (Pnask) shows the pulses of +5 cm H,O randomly introduced by the ventilator, superimposed over a
baseline CPAP level of 7 cm H,0. Corresponding changes in instantaneous lung volume (V;), systolic blood pressure (SBP), and

R-R interval (RRI) are also shown.

TABLE 1. Summary of cardiovascular measures.

Control OSA p-Value
Parameter Wakefulness REM Stage 2 Wakefulness REM Stage 2 Group State Group x State
Mean RRI (ms) 980 £ 44 1027 +39 1045+ 39 799 = 39 821 +£39 81239 0.002 0.015* 0.194
RRI variability (ms) 49.9+83 49175 444+71 441+66 414+56 29.3=+3.6 0.212 0.098 0.606
Mean SBP (mmHg) 1271 +£6.3 1228 +57 117940 1211 +£3.8 1254 +4.3 1219+ 3.8 0.970 0.379 0.291
SBP variability (mm Hg) 49+ 0.3 41+05 45 +0.3 7.4 +17 4.7 + 0.8 48 +0.5 0.232 0.079 0.384
Mean DBP (mmHg) 69.2+46 709x48 66625 655+32 69.3+20 657+33 0564 0.405 0.893
DBP variability (mmHg) 35+07 27+03 28+03 57+14 41+05 34+04 0.059 0.108 0.508

RRI: R-R Interval; SBP: Systolic blood pressure; DBP: Diastolic blood pressure.

order (dashed line) model prediction residuals are
displayed. The improvement in the output prediction
from the first-order to the second-order models is
evident by the higher power spectral density of the
first-order residuals below 0.3 Hz, and especially below
0.15 Hz. In order to quantify the contribution of the
individual second-order dynamics to the model pre-
diction, the NMSE was computed in models that in-
cluded the linear and each one of the three second-
order components at a time. On average, the individual
contributions of the second-order kernels were as fol-
lows: VZ-RRI contribution 7.4 + 0.7% in controls
and 9.4 + 0.7% in OSAS; SBP>~RRI contribution
8.8 £ 0.6% in controls and 10.6 = 0.7% in OSAS;
and V *SBP-RRI contribution 12.7 + 0.9% in con-
trols and 15.5 £ 0.9% in OSAS.

Linear Kernels

The impulse responses corresponding to the two
mechanisms are consistent with the underlying physi-
ology. Representative RCC impulse responses from
the control and OSAS groups are shown in Fig. 4 (left
panels). The RCC linear kernel, representing the linear
dynamics of the central component of the respiratory
sinus arrhythmia, shows a fast negative peak (increase
in heart rate during inspiration) and a lead (negative
delay) between the HR and the V.. Representative
ABR impulse responses are also displayed in Fig. 4
(right panels). The ABR impulse response increases
initially to positive values, reflecting a very rapid
decrease in HR (increase in RRI) in response to an
increase in ABP. The magnitudes of the impulse
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FIGURE 3. Average spectra of the RRI signal (solid lines) and the first-order (dotted lines) and second-order (dashed lines)
residuals, for the control and OSAS groups, during wakefulness, REM and Stage 2 sleep. Second-order residuals are considerably
lower with respect to the first-order residuals at frequencies below 0.15 Hz, and especially below 0.08 Hz.

responses corresponding to the control subject were
larger than the ones from the OSAS subject for both
RCC and ABR mechanisms, except for ABR during
wakefulness.

Second-Order Kernels

Representative Vi-RRI second-order kernels are
shown in Fig. 5. The Vi—RRI kernels presented dis-
tinct shapes and very slow dynamics (lasting longer
than the 40 s), indicating the presence of complex and
very slow frequency contributions. The kernel ampli-
tudes were larger during sleep relative to wakefulness,
especially in the control subject. Sample SBP>-RRI
second-order kernels are shown in Fig. 6. Although the
SBP>-RRI kernels also presented distinct shapes, they
were less irregular than those for the Vi~RRI kernels.
Moreover, the SBP>~RRI kernels presented a fast large
peak within the first 10 s and decayed within 40 s,

reflecting relatively faster dynamics. The kernel
amplitudes from the control subject were larger than
those from the OSAS patient, during both wakefulness
and sleep. Sample V *SBP-RRI second-order kernels
are also shown in Fig. 7. These kernels presented a
combination of both slow and fast dynamics, aligned
to the V¢ and SBP axes respectively, which is consistent
with the type of time responses found in the self-ker-
nels described before.

Statistical Comparison of Model Parameters

Table 2 displays the group-averaged results
(mean £+ SE) for all compact descriptors derived from
the RCC and ABR impulse responses. The linear RCC
gain index (IRMgcc) was smaller in the OSAS subjects
relative to controls (p < 0.04). In both subject groups,
there was little change in IRMycc across sleep—wake
states (Fig. 8, top-left panel). Latency of the RCC
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FIGURE 4. Representative tracings of the RCC and ABR model impulse responses estimated from a normal control (dark trac-
ings) and OSAS patient (light tracings) during wakefulness, REM, and Stage 2 sleep. The impulse response amplitudes corre-
sponding to the control subject were larger than the ones from the OSAS subject for both RCC and ABR mechanisms, except for

ABR during wakefulness.

impulse responses was more negative in the OSAS
patients relative to controls (p < 0.04), but unchanged
with sleep—wake state.

The ABR gain (IRMAgr) was lower in the OSAS
subjects relative to controls (p < 0.04) and increased
almost significantly from wakefulness to sleep; how-
ever, this increase was clearly much greater in the
controls (IRM4gr Was approximately twice as large in
sleep relative to wakefulness in the control subjects,
while it was no significant dependence of the ABR
gain on state in the OSAS patients; Fig. 8, top-right
panel).

Table 2 also displays the group-averaged results
(mean £+ SE) for all compact descriptors derived from
the second-order self- and cross-kernels. The Vi~RRI
gain (Klez) increased from wakefulness to sleep in
both control subjects and OSAS patients (p < 0.03).
The SBP>-RRI gain (KMgpp:) was higher in controls
vs. OSAS patients (p < 0.0001). KMgpp» also increased
almost twice from wakefulness to Stage 2 sleep in the
controls, while there was no significant dependence of

the SBP-RRI gain on state in the OSAS patients
(Fig. 8, bottom-left panel). The V*SBP-RRI gain
(KMy,ssgp) was higher in controls relative to OSAS
patients (p < 0.002), but did not change significantly
across wake—sleep states (Fig. 8, bottom-right panel).

Simulation Results for Physiological Interpretation of
Nonlinear Kernels

The normalized frequency response of the linear and
nonlinear RCC components to a chirp V, signal of
different levels is shown in Fig. 9. For both Control
and OSAS groups, the linear RCC responses were
independent of tidal volume. In contrast, the combined
linear/nonlinear RCC response was affected by tidal
volume in both groups. As tidal volume increased from
0.5 to 3 L, the nonlinear RCC responses also in-
creased, particular at frequencies below 0.3 Hz. Both
the linear and nonlinear RCC responses were larger in
the Control group compared to the OSAS group. The
increase in the nonlinear RCC response with tidal
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FIGURE 5. Representative V>-RRI second-order kernels, corresponding to wakefulness, REM, and Stage 2 sleep in the control
and OSAS subjects shown in Fig. 4. Note that kernel amplitudes were higher in sleep vs. wakefulness in both subjects.

volume level was more pronounced in the OSAS than
in the Control group.

The step-responses for the linear and nonlinear
components of ABR for different SBP step magnitudes
are shown in Fig. 10. A steady-state level was achieved
within 30 s in both groups. The linear ABR step-re-
sponses increased as the SBP step magnitude increased,
as expected. The nonlinear ABR step-responses, on the
other hand, were negative and decreased as the SBP
step magnitude increased. The resulting combined

linear and nonlinear ABR step-responses also in-
creased with the SBP step magnitude, although as the
step became larger, the differential increase became
smaller. This can be better visualized in the bottom
panels, which display the steady-state values achieved
under the different step magnitudes tested. The first-
order steady-state ABR responses were linearly related
to the SBP step-size, while the combined first/second-
order steady-state ABR responses increased less
rapidly with the respect to the step magnitude,
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control and OSAS subjects displayed in Fig. 4. Kernel amplitudes were larger in the control relative to the OSAS subject, but there

appears to be little dependence on state.

demonstrating a tendency to saturate with increasing
step magnitude.

Figure 11 shows the results of model simulations in
which the linear and nonlinear baroreflex components
were stimulated by BP pulses at different times during
the respiratory cycle. In both types of subjects, the
ABR pulse response was larger when the SBP pulse
was triggered during expiration than during inspira-
tion. In the control group, the ABR pulse response
decreased to ~80% of its mean value (~50 ms) at mid
inspiration, and started to increase to ~120% of its
mean values at mid expiration. This behavior is similar
to the experimental results obtained by Eckberg'
using neck suction to stimulate the baroreceptors. In
the OSAS group, the decrease in ABR pulse response

during inspiration was minimal, but the increase dur-
ing expiration was more substantial. As expected, the
ABR pulse responses in OSAS were smaller in overall
level than those in the controls because of the reduced
linear and nonlinear baroreflex gains in the former
group.

DISCUSSION

Delineation of Major Components of HRV

HRYV is modulated primarily from neural and
mechanical coupling of the respiratory and cardio-
vascular systems, lung vagal, and Dbaroreflex
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feedbacks.'® Central to the method introduced in this
study is the mathematical model that allows delinea-
tion of these respiratory and baroreflex contributions.
Although respiration and blood pressure are treated as
mutually independent inputs, together with heart rate,
are part of a larger closed-loop control system."!” By
imposing physiological delays in this closed-loop sys-
tem, feedforward and feedback dynamics can be sep-
arated, in essence, allowing the loop to be
“computationally opened.”* For instance, in the
baroreflex portion of the closed-loop system, present

changes in RRI are constrained to be influenced only
by past fluctuations of blood pressure. This imposed
constraint (termed “causality” in systems engineering
terminology) forces the estimation scheme to converge
towards a solution that reflects the effect of blood
pressure on RRI (i.e., the baroreflex), rather than the
effects of RRI on blood pressure (i.e., the feedforward
component). This “temporal delineation” approach
can only be formulated in the time domain and has
been extensively used in cardiovascular control system
identification."®17* In contrast, frequency-domain
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TABLE 2. Linear and nonlinear gain estimates.

Control OSA p-Value
Parameter Wake REM Stage 2 Wake REM Stage2  Group State Groupx State
Linear parameters
RCC IR magnitude 478+85 51.0+7.7 536+85 255x51 338x55 284x65 0.037 0.054 0.246
(ms/L)
ABR IR magnitude 221 £0.44 434 +£0.92 3.71 £+ 0.77 1.84 +0.42 1.75+ 0.34 2.19 £+ 0.42 0.032 0.053 0.058
(ms/mmHg)
Nonlinear parameters
VZ2-RRI kernel magnitude 258+47 347+86 37254 148+27 284+46 24365 0.128 0.025 0.737
(ms/L?)
SBP?-RRI kernel magnitude  0.19 + 0.07 0.24 + 0.04 0.38 + 0.08 0.07 + 0.02 0.09 + 0.01 0.06 + 0.01 <0.0001 0.174 0.085
(ms/mmHg?)
V*SBP-RRI kernel magnitude 4.32 + 0.91 5.12 + 0.58 5.48 + 0.69 1.98 + 0.35 3.21 + 0.62 2.64 + 0.30 0.002 0.084 0.62

(ms/L'/mmHg?)

RCC: respiratory—cardiac coupling component; ABR: arterial baroreflex component.
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FIGURE 8. Average values of the linear and nonlinear gains for the control (filled circles) and OSAS (open triangles) groups are
presented here. RSA gain (IRMgsa) was significantly higher in controls vs. OSAS, but was unchanged with sleep—wake state.
Baroreflex gain (IRMaggr) was also higher in controls vs. OSAS patients, and increased substantially in controls, while was only
slightly elevated in the OSAS. SBP2-RRI gain (KMgg,2) was higher in controls vs. OSAS, especially during Stage 2 sleep. V,*SBP-

RRI gain (KMy,sgp) Was higher in controls vs. OSAS.

methods (i.e., cross-spectral analysis) do not allow the
implementation of causality constraints.

In principle, the estimation of the linear and non-
linear kernels of our model is best achieved when the
corresponding inputs, SBP and Vi, are independent of
each other.® Changes in intrathoracic pressure during
respiration, however, can induce changes in blood
pressure. Fortuitously, other influences, such as vari-
ations in cardiac output and peripheral resistance, also
contribute to spontaneous fluctuations in SBP. In our
study, application of the test protocol helped to further
decorrelate V. and SBP, since on any given breath,
inspiration can result in either a decrease or increase in

SBP. Which way SBP is affected depends on the rela-
tive amounts of active breathing vs. assistance pro-
vided by the ventilator during that breath.!”

Nonlinear Contributions of V, and SBP to HRV

The nonlinear characteristics involved in the mod-
ulation of HRV were confirmed by comparing the
prediction NMSE achieved by the linear and nonlinear
models. The prediction NMSE was reduced by ~30%
when second-order terms were included in the model,
showing that second-order dynamics cannot be ne-
glected. It was also observed that the individual con-
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tribution of the second-order kernels were higher for Analysis of the spectral content of the first- and
the SBP>~RRI and V. *SBP-RRI components, indi- second-order model residuals (output prediction
cating that nonlinear mechanisms involving SBP error) demonstrated that the second-order nonlinear-

interactions, contribute more to HRV. ities make a significant contribution to the RRI
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In both subject groups, baroreflex

stimulation exerted a greater effect during expiration than in inspiration. Top panel: Normal control; Bottom panel: OSAS subject.

spectrum at the low and very low frequency range
(below 0.15 Hz and mostly below 0.08 Hz). This
finding is consistent with a number of previous stud-
ies. Mullen er al.,”® when studying the effects of pos-
ture and autonomic blockade on a cardiovascular
closed-loop linear model of similar structure, observed
that the power of the residuals of the HRV model
were concentrated at frequencies below 0.1 Hz; they
attributed these effects to the presence of nonlinear
coupling mechanisms. A similar concentration of the
residual power at frequencies below 0.1 Hz was found
by Mukkamala et al.,*® when they applied a similar
lincar model of HRV to assess impairment of auto-
nomic control in patients with diabetic autonomic
neuropathy. Chon er al.® demonstrated that the
residuals of the linear portion of their model, con-
centrated at frequencies below 0.08 Hz, were reduced
significantly after they included second-order nonlin-
ear components to the model. Consistent with these
previous studies, our results have also shown a con-
centration of the first-order residuals at frequencies
below 0.08 Hz that are largely eliminated in the
nonlinear model. Moreover, we have determined from
careful analysis of the contributions of the inputs and
their cross-correlations with the residuals that the very
low-frequency residual power may be attributed
mostly to nonlinearity in the baroreflex contribution
and the effect of nonlinear ABP-V, interaction on
HRV.

Linear Dynamics

The impulse responses (first-order kernels) corre-
sponding to the two mechanisms are consistent with
the underlying physiology, similar to the results from
the 2-input linear model of HRV presented in our
previous studies."!” The RCC impulse response, which
represents the mainly vagal coupling between respira-
tion and heart period, shows a fast initial negative peak
and a lead (negative delay) between the HR and V,,

reflecting an increase in heart rate during inspiratory
effort, starting before the onset of the actual mechan-
ical inspiration. The baroreflex impulse response in-
creases initially to positive values, reflecting a very
rapid decrease in HR (increase in RR interval) in re-
sponse to an increase in ABP.

The RCC gain index extracted from the impulse
responses was statistically higher in controls vs. OSAS
in all states, indicating that the mainly parasympa-
thetically mediated RCC mechanism is suppressed in
these patients during both wakefulness and sleep. In
addition, the fact that the RCC impulse response starts
earlier but its peak occurs later in the OSAS patients
suggests that the RCC mechanism is not only de-
pressed in this group, but requires a longer time to
fully modulate heart rate. The increase on the average
ABR impulse response magnitudes from wakefulness
to sleep in the control group supports the notion that
baroreflex gain increases during sleep.® The fact that
the average ABR impulse responses were smaller in
magnitude in the OSAS and did not change across
wake-sleep states, indicates an impaired baroreflex
control in these patients. Results from the statistical
analysis of the ABR gain fully support the previous
findings. Overall, the results on the first-order kernels
of the two main mechanisms RCC and ABR identified
using the second-order model of HRV are in excellent
agreement with our results from the linear model re-
ported in the previous study.!” One advantage in using
the nonlinear model, however, is that it provides better
model prediction and probably better parameter esti-
mation.

Second-Order Dynamics

The distinct shapes and tendency for the Vi-RRI
second-order self-kernels to decay over relatively long
periods of time indicate the presence of very complex
and mainly slow dynamics involved in the nonlinear
effects of respiration on heart rate. As well, the
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significant increase in the magnitudes of the Vi—RRI
kernels from wakefulness to sleep in both the control
and OSAS suggests that the nonlinear effects of res-
piration on heart rate play a more important role
during sleep. All the linear indexes of RCC gain pre-
sented here and in our previous study'’ represent direct
respiratory modulation of heart rate, mainly via
parasympathetic activity, since the mechanisms repre-
sented by these indices work at frequencies above
0.1 Hz, where the sympathetic system is unable to
modulate heart rate. On the other hand, the nonlinear
component of RCC gain (Vi~RRI interaction), which
contains very low frequency dynamics, may be medi-
ated by both sympathetic and parasympathetic activ-
ity, as was shown in the study by Chon e al.® In their
study, it was observed that following propanolol
administration (sympathetic blockade), the Vi—RRI
kernel amplitudes became smaller, but the decrease
was more evident after atropine administration (para-
sympathetic blockade). Thus, the fact that Vi~RRI
kernel magnitudes increased during sleep suggests that
both sympathetically and parasympathetically medi-
ated nonlinear effects of respiration in the modulation
of heart rate are increased during sleep. In contrast to
the linear RCC gains, the Vi-RRI kernel magnitudes
were similar in the control and OSAS groups, indi-
cating that only the linear component of RCC is al-
tered in OSAS.

Mechanisms involved in the SBP>~RRI interaction
appear to present less complex but much faster
dynamics than those observed in Vi~RRI interaction.
In the study of Chon et al.} the amplitude of the
SBP>-RRI decreased considerably after the applica-
tion of double autonomic blocking agents (propanolol
and atropine). However, when only either propanolol
(sympathetic blockade) or atropine (parasympathetic
blockade) was applied, only a modest reduction in the
SBP>-RRI was observed. These results indicate that
both vagal and sympathetic modulations are involved
in the nonlinear interactions between blood pressure
and heart rate, but in the absence of one of these two
factors, the remaining factor is still able to significantly
mediate the nonlinear interaction between blood
pressure and heart rate. Therefore, our results, which
show a dramatic significant decrease in the magnitudes
of the SBP>-RRI kernels from the OSAS group rela-
tive to those from the control group (notice the
achieved p < 0.0001), strongly support the notion that
both sympathetic and parasympathetic functions in-
volved in the nonlinear arterial baroreflex modulation
of heart rater are impaired in OSAS patients. It is also
interesting to observe that the SBP>-RRI kernel
magnitude increased from wakefulness to sleep (almost
two-fold during Stage 2 sleep) in the control group,
while it was almost unchanged in the OSAS group.

These findings and the results from the linear ABR
gains indicate that both the linear and nonlinear
components of the arterial baroreflex mechanism in-
creased during sleep under normal conditions, while in
OSAS patients both linear and nonlinear dynamics of
ABR are diminished.

Chon et al.® also reported a reduction in V*SBP-
RRI kernel magnitude after either atropine or pro-
panolol administration, indicating that the contribu-
tion to HRV from the interaction between ABP and
respiration is mediated by both vagal and sympathetic
pathways. Our estimates of the V#*SBP-RRI kernel
show that the interactions between fast changes in SBP
and fast and slow changes in V, are attenuated in the
OSAS subjects, further suggesting impairment of both
sympathetic and parasympathetic control in these pa-
tients.

One of the disadvantages of employing the Volterra
approach to model nonlinear dynamics is that the
complexity of the model grows very rapidly as the
order of the dynamics increases. Kernels that are third-
order or higher are difficult even to represent on a
graphical basis, since three-dimensional plots of the
kernel yield information of only a “‘slice” through one
of the dimensions. Thus, truncating the model to sec-
ond order is somewhat arbitrary and could lead to the
omission of potentially important nonlinear dynamics.
On the other hand, our tests of the residuals following
the application of the second-order model showed that
these were largely broad-band (see Fig. 3), suggesting
that much of the dynamics was indeed captured by the
model. Our findings are supported by a previous study
by Chon er al.,® who similarly employed a second-or-
der Volterra model to investigate HRV. An alternative
approach has been to use ““block-structured”” models
that contain interconnections of dynamic linear sys-
tems and static nonlinearities.>® These types of models
allow some highly nonlinear systems to be character-
ized with a relatively small number of parameters. The
drawback here is that an incorrect assumption of the
system structure would also lead to incorrect model
identification. There are a number of simple cases in
which one-to-one correspondences between Volterra
kernel models and block-structured models can be
easily identified. For instance, if the actual underlying
system could be described as a “Hammerstein’ model,
consisting of a static nonlinearity followed by a linear
dynamic system, the second-order kernel would be
zero everywhere except along the diagonal (7| = 75). In
the case of a “Wiener” model, consisting of a linear
dynamic system followed by a static nonlinearity, any
“slice” of the second-order kernel at fixed 7, would be
proportional to the first-order kernel. We examined
our estimated second-order kernels for these special
features but did not find them.
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Physiological Interpretation of Current Findings

As mentioned earlier, the complexity of second- and
higher-order Volterra kernels greatly complicate our
ability to interpret the physiological ramifications of
these models. To alleviate this problem, we performed
simulations with the estimated models that mimicked
physiological experiments. Simulations of the RSA
response derived from our linear and nonlinear kernels
confirmed a dependency of the RSA frequency re-
sponse upon the tidal volume.'®'> More interestingly,
this tidal volume dependency increases with increasing
magnitude of the nonlinear (second-order) dynamics
between respiration and heart rate fluctuations. Sim-
ulations of the ABR steady-state response derived
from our linear and nonlinear kernels confirmed a
saturation in the SBP—RRI relation. The simulations
also demonstrate that the rapidity with which the in-
creases in RRI saturate as SBP is increased depends on
the magnitude and form of the second-order kernel
relating blood pressure to RRI fluctuations.

Simulations of the RSA—ABR nonlinear interaction
derived from our second-order cross-kernel indicate a
respiratory modulation of baroreflex gain. For both
controls and OSAS, the ABR response was larger
during expiration than during inspiration, as had been
previously observed by Eckberg and Orshan.'' This
results provide additional evidence of the existence of
an interaction between respiratory and baroreceptor
reflexes, and suggest that the quality of the central
autonomic modulation depends upon the level of
afferent baroreceptor activity and the depth of inspi-
ration.'® Tt is important to note, however, that this
effect is small relative to the combined effects of all
other components of our model.

How does OSAS lead to detrimental consequences
for the autonomic regulation of the cardiovascular
system? Although the pathophysiological pathways
remain unresolved, a number of important animal
studies™'? suggest that chronic exposure to episodic
hypoxia, which stimulates the peripheral chemoreflexes
acutely, leads to a resetting of chemoreceptor function.
This, in turn, suppresses baroreceptor function, lead-
ing to a sustained increase in sympathetic tone.'® It is
also possible that the concomitant exposure to episodic
arousal from sleep, which generally accompanies
the termination of obstructive apnea, could play a
contributory role in the genesis of sympathetic
overactivity.*

Potential Confounding Effects of CPAP

In the OSAS patients, CPAP at their individually
prescribed levels was applied during sleep in order
to ensure upper airway patency throughout the test

procedure. This was an important part of the experi-
mental procedure, since it enabled us to assess auto-
nomic control across different sleep—wake states and
across individuals under relatively similar patterns of
respiration and under stable stages of sleep. In con-
trast, previous investigations of autonomic control in
OSAS during sleep were carried out under uncon-
trolled conditions in which the episodes of obstructive
apnea were associated with profound swings in sym-
pathetic and parasympathetic activity as well as tran-
sient state changes.'”> The occurrence of large swings
in respiration and the cardiovascular variables can lead
to severe distortions of the HRV and blood pressure
variability spectra, and thus contribute to interpreta-
tional difficulties if these spectral measures are used for
making inferences about autonomic function.?'

On the other hand, CPAP application in the OSAS
patients during sleep may have led inevitably to some
confounding influences. For example, in subjects with
normal heart function, acute application of CPAP is
known to decrease left ventricular preload more than
left ventricular afterload, leading to a reduction in
cardiac output.” However, our OSAS subjects did not
show any change in SBP or DBP during sleep relative
to wakefulness when only minimal CPAP was applied.
The CPAP-induced increase in lung volume itself may
have also contributed to some increase in vagal activity
and reduction in sympathetic drive.® Therefore, our
technique is likely to have underestimated the extent of
autonomic abnormality in the OSAS subjects during
sleep."”

CONCLUSIONS

In this study, we have applied a second-order model
to determine the presence of nonlinear interactions in
the regulation of HRV, as well as to investigate how
these interactions are affected by OSAS and by dif-
ferent wake—sleep states. Our results showed a signifi-
cant nonlinear component of HRYV, concentrated
primarily at frequencies below 0.08 Hz, confirming
previous results. Second-order interactions related to
the baroreflex constituted the most significant nonlin-
ear component involved in HRV. It was also demon-
strated that both linear and nonlinear dynamics
involved in the regulation of HRV are altered in OSAS
and depend to some extent on sleep—wake state. Fi-
nally, this study provides simple physiological inter-
pretations to the second-order dynamics derived by
our nonlinear model of HRV. The second-order ker-
nels reflect specific characteristics of the RCC and
ABR mechanisms, such as dependence of RCC on
tidal volume, saturation in the SBP-RRI relation,
and respiratory modulation of baroreflex gain. In
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summary, the application of the nonlinear model-
based approach to quantify lincar and nonlinear
dynamics involved in the autonomic control of heart
rate constitutes a useful, insightful and comprehensive
approach for the detection and assessment of abnor-
mal autonomic function in OSAS during wakefulness
and sleep. This noninvasive method could also be
useful for evaluating autonomic dysfunction in other
disease conditions, such as diabetes, Parkinson disease
and Shy-Drager syndrome.
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