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Abstract—One of the fundamental principles of cortical brain
regions, including the hippocampus, is that information is rep-
resented in the ensemble firing of populations of neurons, i.e.,
spatio-temporal patterns of electrophysiological activity. The
hippocampus has long been known to be responsible for the
formation of declarative, or fact-based, memories. Damage to
the hippocampus disrupts the propagation of spatio-temporal
patterns of activity through hippocampal internal circuitry, re-
sulting in a severe anterograde amnesia. Developing a neural
prosthesis for the damaged hippocampus requires restoring this
multiple-input, multiple-output transformation of spatio-tem-
poral patterns of activity. Because the mechanisms underlying
synaptic transmission and generation of electrical activity in
neurons are inherently nonlinear, any such prosthesis must be
based on a nonlinear multiple-input, multiple-output model. In
this paper, we have formulated the transformational process of
multi-site propagation of spike activity between two subregions of
the hippocampus (CA3 and CA1) as the identification of a mul-
tiple-input, multiple-output (MIMO) system, and proposed that it
can be decomposed into a series of multiple-input, single-output
(MISO) systems. Each MISO system is modeled as a physio-
logically plausible structure that consists of 1) linear/nonlinear
feedforward Volterra kernels modeling synaptic transmission
and dendritic integration, 2) a linear feedback Volterra kernel
modeling spike-triggered after-potentials, 3) a threshold for spike
generation, 4) a summation process for somatic integration,
and 5) a noise term representing intrinsic neuronal noise and
the contributions of unobserved inputs. Input and output spike
trains were recorded from hippocampal CA3 and CA1 regions of
rats performing a spatial delayed-nonmatch-to-sample memory
task that requires normal hippocampal function. Kernels were
expanded with Laguerre basis functions and estimated using a
maximum-likelihood method. Complexity of the feedforward
kernel was progressively increased to capture higher-order system
nonlinear dynamics. Results showed higher prediction accuracies
as kernel complexity increased. Self-kernels describe the nonlin-
earities within each input. Cross-kernels capture the nonlinear
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interaction between inputs. Second- and third-order nonlinear
models were found to successfully predict the CA1 output spike
distribution based on CA3 input spike trains. First-order, linear
models were shown to be insufficient.

Index Terms—Feedback, hippocampus, Laguerre expansion,
multiple-input, multiple-output system, spatio-temporal pattern,
spike, time-rescaling theorem, Volterra kernel.

I. INTRODUCTION

THERE are essentially three classes of central nervous
system neural prostheses currently under development

and application. The first class attempts to compensate for
loss of sensory input by replacing the transduction by primary
sensory cells of physical energy from the environment into elec-
trical stimulation of sensory nerve fibers (e.g., cochlear implant
or artificial retina), or sensory cortex [1], [2]. The second class
is designed to compensate for loss of motor control, and does
so through functional electrical stimulation, in which prepro-
grammed stimulation protocols are used to activate muscular
movement [3], [4], or to control robotic systems or computer
cursors by “decoding” motor cortical command signals from
the brain [5]–[10]. The third class of neural prostheses is
designed to replace lost cognitive function, i.e., damage to
central parts of the brain that are neither expressly sensory nor
expressly motor, but are the basis of higher thought processes
such as memory, language, planning, etc. This third class of
prostheses presents unique challenges given that the solution
requires replacing, not communication between sensory events
and the brain, and not between the brain and robotics/computer
systems, but instead, replacing communication between brain
regions. A prosthesis for a central part of the brain must replace
the damaged cells with biomimetic, silicon neurons having
functional properties specific to those of the damaged neurons.
In addition, such a prosthesis must both receive as inputs and
send as outputs electrical activity from/to regions of the brain
with which the damaged neurons previously communicated.
Thus, a cognitive prosthesis is one that would replace the
computational function of the damaged brain area, and restore
the input-output transmission of that computational capacity to
appropriate brain regions.

We are in the process of developing a cognitive prosthesis for
the hippocampus [11], [12], a region of the brain responsible
for the formation of new long-term memories [13]–[17]. We
are considering conditions in which a part of the hippocampal
intrinsic trisynaptic circuit is damaged or destroyed, which
commonly occurs as a consequence of stroke (selective loss
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1054 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 6, JUNE 2007

Fig. 1. General structure of MIMO and MISO models. (A) A MIMO model consists of a series of MISO models; (B) Each MISO model has a physiologically
plausible structure. The K block contains feedforward kernels that can be of any order; The H block is the feedback kernel; n is a Gaussian white noise input
with standard deviation �; � is a threshold; x denotes input spike trains; y denotes output spike trains; the hidden variable u is the “synaptic potential” w is the
“prethreshold membrane potential”; a is the output spike-triggered “after-potential.”

of CA1 neurons; [18]–[20]), epileptic activity (preferential
damage to CA3; [21]), or head trauma (preferential damage
to hippocampal hilar neurons; [22]). Alzheimer’s Disease and
other forms of dementia are consistently associated with loss
of neurons throughout the hippocampal formation, though
preferentially within the entorhinal layers providing inputs
to, and receiving outputs from, the hippocampus proper
[23]–[25]. As noted above, a critical part of achieving such
a hippocampal prosthesis is a biomimetic replication of the
computational/signal processing properties of the neurons to be
replaced. The goal is to ensure that the prosthesis transforms
input signals from one region of the hippocampus into appro-
priate output signals for another region of the hippocampus.
For example, our previous steps in developing a hippocampal
prosthesis have utilized the hippocampal slice. The transverse
hippocampal slice preparation maintains intact the intrinsic
trisynaptic pathway, including entorhinal cortical afferents
to the dentate gyrus, dentate inputs to the CA3 region, and
CA3 afferents to the CA1 layer. We developed a single-input,
single-output model of the CA3 region, a hardware instantia-
tion of that model, and a multi-electrode recording-stimulation
array that supported bi-directional communication between the
slice and the hardware model of CA3. The mathematical model
of CA3 was experimentally based, and realized in the form of
a truncated Volterra series (see [11] and below for more detail).
In summary, the model predicts CA3 output on a msec-to-msec
basis according to the past history (temporal pattern) of dentate
input, and it does so for essentially all known physiological

dentate inputs and with approximately 95% accuracy. After
surgical removal of CA3 from the slice, we demonstrated that
the hardware-based input-output model successfully substituted
for CA3 function, and reinstated trisynaptic circuit dynamics
[11].

Our next step is to extend this approach to populations of
neurons in vivo. One of the fundamental principles of cortical
brain function in the behaving animal, including that of the hip-
pocampus, is that information is represented in the ensemble
firing of populations of neurons, i.e., spatio-temporal patterns
of electrophysiological activity. For example, single neurons in
primary visual cortex (V1) each respond maximally to linear
visual stimuli of a given orientation; activity of the entire neu-
ronal population provides a representation of the current vi-
sual field [26], [27]. Single neurons in primary motor cortex
(M1) for the arm/hand region each respond maximally to given
“reach” position in two- and three-dimensional space; activity
of the entire neuronal population provides a representation of
“reach space” [28], [29]. Representations in hippocampus can
be more complex, with each neuron responding preferentially
to a combination of multi-modal information related to extrinsic
cues defining spatial location, learned behavior, and other fac-
tors [13], [14], [30]–[35]. Although there remains some debate
as to the precise correlate of hippocampal neurons in behaving
animals, it is the re-encoding of information as it propagates
through hippocampal circuitry that allows the spatio-temporal
patterns of activity representing short-term memory for events
and/or labels (“declarative” information) to be converted into
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the spatio-temporal patterns of activity appropriate for the for-
mation of long-term memory [17], [35]–[37]. Thus, the essential
challenge in developing a hippocampal neural prosthesis for the
behaving animal is identifying a computational model that can
accurately predict the nonlinear transformations of input hip-
pocampal activity into output hippocampal activity to success-
fully re-instate the encoding of short-term memory into long-
term memory.

This paper describes a modified Volterra kernel approach for
such a modeling task. In this approach, the modeling of spatio-
temporal pattern transformations is formulated as the identifi-
cation of a multiple-input, multiple-output (MIMO) system that
can be decomposed into a series of multiple-input, single-output
(MISO) systems Fig. 1(A). Each MISO system is modeled by
a physiologically plausible structure that is able to differentiate
and capture feedforward and feedback nonlinear dynamics of
the multiple intrinsic mechanisms and circuitries reflected in the
activity of the output neuron in question Fig. 1(B). The feed-
forward block of the model corresponds to the contribution of
nonlinear synaptic transmission and dendritic integration of the
neuron [38]–[40]. This block transforms input spike trains into
a hidden variable, which can be interpreted as the postsynaptic
potential. It is modeled by a nonlinear discrete-input, contin-
uous-output Volterra kernel model. In addition to the feedfor-
ward component, a feedback block is included to model the
spike-triggered processes that influence the future membrane
potential and firing properties of the neuron. It is modeled by a
linear first-order Volterra model. Previous electrophysiological
and modeling studies have shown that spike-triggered processes
can profoundly influence the firing behavior of hippocampal
and other cortical neurons [41]–[46]. Furthermore, to assess the
spiking variability caused by intrinsic neuronal noise and the
contributions of unobserved inputs, a Gaussian white noise term
is added to make the model stochastic.

Section II-A and B of this paper provide a brief description
of the experimental procedures and data preprocessing. Sec-
tions II-C–II-F give detailed mathematical expressions of model
configuration, parameter estimation, kernel reconstruction, and
model validation. Models estimated from experimental data ap-
pear in Section III. Finally, we will discuss the possible exten-
sion of the model in Section IV.

II. METHODS

A. Experimental Procedures

Male Long-Evans rats were trained to criterion on a two-
lever, spatial delayed-nonmatch-to-sample (DNMS) task with
randomly occurring variable delay intervals [37], [47]. Animals
performed the task by pressing (sample response) a single lever
presented in one of the two positions in the sample phase (left
or right); this event is called the “sample response.” The lever
was then retracted and the delay phase initiated; for the duration
of the delay phase, the animal was required to nosepoke into a
lighted device on the opposite wall. Following termination of
the delay the nosepoke light was extinguished, both levers were
extended and the animal was required to press the lever opposite
to the sample lever; this act is called the “nonmatch response.”
If the correct lever was pressed, the animal was rewarded and
the trial was completed.

Fig. 2. Input and output signals of the model correspond to the spike trains
recorded from hippocampal CA3 and CA1 regions. (A) CA3 and CA1 spike
trains are recorded using a multi-electrode array. (B) Anatomical locations of
input (CA3) and output (CA1) neurons indicated on a “foldout map” of the hip-
pocampus (compare the CA3 and CA1 regions in (A) versus (B); after Swanson
et al. [57]. For this sample MIMO dataset, there are 16 inputs (white symbols)
and 7 outputs (black symbols). The sample MISO dataset illustrated has 3 in-
puts (white stars) and 1 output (black star).

Spike trains were obtained with multi-site recordings from
different septo-temporal regions of the hippocampus of rats per-
forming the above described DNMS task Fig. 2(A). For each
hemisphere of the brain, an array of electrodes (microwires) was
surgically implanted into the hippocampus, with 8 electrodes in
the CA3 (input) region and 8 electrodes in the CA1 (output) re-
gion. Each electrode had the capacity of recording as many as 4
discriminable units. Spike and behavioral responses were digi-
tized and time-stamped with a 25 resolution. Datasets from 6
rats were analyzed. Three sessions of recordings were selected
from each rat. A session included approximately 90 successfully
performed DNMS tasks that each consisted of four behavioral
events, i.e., right sample (RS), left sample (LS), right nonmatch
(RN), and left nonmatch (LN).

B. Data Preprocessing

Spike trains were prescreened based on mean firing rate and
peri-event histogram. Neurons with mean firing rates in the
range of 0.5 to 15 Hz and identifiable perievent histograms
were included in further analyses. Low ( 0.5 Hz) and high
( 15 Hz) mean rate recordings were rejected since they could
represent artifacts or mixtures of action potentials. Both pre-
sumed principal (pyramidal) neurons and interneurons were
included in the datasets analyzed. The bin size was increased to
2 ms to reduce data length; for this bin size, each bin contained
a maximum of one spike event. Perievent ( 2 s to 2 s) spike
trains of the four behavioral events were extracted from each
session and then concatenated.

Each MIMO dataset consisted of between 6–16 CA3 spike
trains and 5–10 CA1 spike trains, depending on the number of
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neurons recorded from each animal and the number of recorded
neurons meeting the selection criteria. Each MIMO dataset was
divided into MISO datasets for system identification. Thus, for
each CA1 output neuron from the set of output neurons recorded
from a given animal, the MISO dataset included all CA3 spike
trains recorded simultaneously. Fig. 2(B) shows the anatom-
ical locations of neurons included in one representative MIMO
dataset (all stars and circles) and one MISO dataset (stars) for il-
lustration. Forty-two MISO datasets from 6 rats were analyzed.

C. Model Configuration

The MISO model has a physiologically plausible structure
[Fig. 1(B)] that can be expressed by the following equations:

when
when

The variable represents input spike trains; represents output
spike train. The hidden variable represents the prethreshold
potential of the output neurons. It is equal to the summation
of three components, i.e., synaptic potential caused by input
spike trains, the output spike-triggered after-potential , and a
Gaussian white noise with standard deviation . The noise
term models both intrinsic noise of the output neuron and the
contribution from unobserved inputs. When crosses threshold

, an output spike is generated and a feedback after-potential
is triggered and then added to . Feedforward kernels describe
the transformation from to . The feedback kernel describes
the transformation from to .

can be expressed as a Volterra functional series of
[48]–[51], as in

The zeroth-order kernel, , is the value of when the input is
absent. First-order kernels, , describe the linear relation be-
tween the th input and . Second- and third-order self-ker-
nels, and , describe the second- and third-order non-
linear relation between the th input and , respectively.
Second-order cross-kernels describe the second-order
nonlinear interactions between each unique pair of inputs
and as they affect . is the number of inputs. denotes
the memory length of the feedforward process. Higher order
kernels, e.g., third-order cross-kernels and fourth-order kernels,
were not calculated in this study.

The feedback variable can be expressed as

where is the linear feedback kernel. is the memory of the
feedback process.

In order to reduce the number of open parameters to be esti-
mated, both and are expanded with orthonormal Laguerre
basis functions [52]

With input and output spike trains and convolved with

and can be rewritten into:

, , , , and are the sought Laguerre expan-
sion coefficients of , , , , and , respectively
( is simply equal to ). Since the number of basis functions

can be made much smaller than the memory length ( and
), the number of open parameters is greatly reduced by the

expansion.

D. Parameter Estimation

With recorded input and output spike trains and , model
parameters can be estimated using maximum-likelihood
method. The log likelihood function can be expressed as
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where

can be calculated using error function (integral of Gaussian
function)

where and are defined as

The gradient of log-likelihood function against coefficents is
given as

where

Hessian matrix is given as

Variables , , , , and , which is the
distance between the threshold and the baseline value of , can
be arbitrarily scaled without influencing the relation between

and . Furthermore, and also can be shifted together. So

without loss of generality, both and can be set to unity value;
only are estimated. is later restored and remains unity value
(see Section II-E). In this paper, both standard Newton nonlinear
optimization method and generalized linear model (GLM) fit-
ting method were used to estimate by maximizing the like-
lihood function [53]–[55]. Nearly identical results were ob-
tained using these two methods, with the link function of GLM
chosen to be the probit function, i.e., inverse cumulative dis-
tribution function of the normal distribution [55]. Confidence
bounds of kernel coefficients are also estimated from the Hes-
sian matrix. All the kernels shown in this paper have narrow
95% confidence bounds, which are not shown in the figures.

E. Kernel Reconstruction

The final coefficients and can be obtained from estimated
Laguerre expansion coefficients, , with a simple normalization
procedure

Feedforward and feedback kernels then can be reconstructed as

Threshold is equal to one in this normalized representation.

F. Model Validation and Prediction

The kernel models described in this paper generate output
spike trains stochastically due to the inclusion of a noise term in
the model. Thus, given the same input spike trains, output spike
trains predicted by the kernel models are different each time.
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This behavior makes direct comparison, e.g., mean-square error,
between recorded output and predicted output difficult. Two
indirect methods were used to evaluate the goodness-of-fit of the
estimated models in this paper. To avoid overfitting, different
datasets were used for parameter estimation and model valida-
tion in this study.

The first method evaluates the firing probability predicted by
the model with the recorded output spike train. According to
the time-rescaling theorem well-known in probability theory,
an accurate model should generate a conditional firing inten-
sity function that can transform the recorded output spike train
into a Poisson process with unit rate [56]. The conditional firing
intensity function can be given as

This is different from the previously shown in the like-
lihood function, because the former represents the probability
of generating a spike at a certain time , whereas the latter de-
notes the probability of generating the recorded output at time
. Let denote the time of the th spike in , then according to

the time-rescaling theorem

should be a Poisson process with unit rate and its intervals,

are independent exponential random variables with unitary
mean. By making the further transformation

then are independent uniform random variables on the interval
(0, 1). The model goodness-of-fit then can be assessed with a
Kolmogorov-Smirnov (KS) test, in which are ordered from the
smallest to the largest and then plotted against the cumulative
distribution function of the uniform density defined as

where and is the total number of output spikes.
If the model is correct, all points should lie on the 45 line of
the KS plot within the 95% confidence bounds given as

[56].
The second method quantifies the similarity between the

recorded output spike train and the predicted output spike
train after a smoothing process. First, is predicted through
simulation: is calculated with input spike trains and the
estimated feedforward kernels . This forms the deterministic
part of . Then, a Gaussian random sequence with standard
deviation is generated and added to to obtain . This

operation includes the stochastic component into . At time
, if the value of is higher than the threshold ), a

spike is added to and a feedback component is added to the
future values of . The calculation then repeats for time
with updated until it reaches the end of the trace. Discrete
signals and then are smoothed to continuous signals
and , by convolution with a Gaussian kernel function having
the standard deviation . Correlation (similarity) coefficients

then is calculated as

Because and are both positive vectors, is a number be-
tween 0 and 1 that measures the similarity between and as a
function of the “smoothness parameter” . can be interpreted
as the cosine of the angle between vectors and . In this
paper, varies from 2 ms to 40 ms with a 2 ms resolution. For
a given , was estimated with 32 trials of simulation of .

III. RESULTS

MIMO models are estimated as arrays of their corresponding
MISO models consistent with the spatio-temporal pattern
structure of the hippocampus, i.e., transformations of inputs
from multiple CA3 neurons to a given CA1 neuron. Thus, es-
timating each MIMO model requires estimating the first-order
kernels, second-order self-kernels, second-order cross-kernels,
and third-order self-kernels for each of the MISO models
comprising the MIMO set (Fig. 1). Each kernel model contains
all the lower order terms, e.g., third-order self-kernel model
has first-order, second-order self and cross-terms and, thus, is a
superset of the lower order kernel models. The feedback kernel

is limited to the linear case (first-order) in all models.

A. First-Order Kernel MISO Model

The feedforward process [K in Fig. 1(B)] is linear in the
first-order kernel model. Fig. 3 shows of a representative
first-order MISO model with 3 inputs. The locations of the input
and output neurons are shown in Fig. 2(B) (stars). are vec-
tors with length . The Gaussian noise standard deviation
is estimated to be 0.311. The KS plot shows that the first-order
MISO model displays a lack of fit for the lower half of quan-
tiles (0.2–0.6), because in that range, model values lie outside
the 95% confidence bounds Fig. 4(C). The maximum distance
between model values and the 45 line is 0.157. A similar in-
sufficiency of first-order models was found in all MISO datasets
(42 of 42).

B. Second-Order Self-Kernel MISO Model

The second-order self-kernel model has second-order terms
for each individual input. are symmetric matrices
describing the pair-wise nonlinear interaction between spikes
of the same input as they affect the hidden variable (Fig. 5,
bottom row). The noise term, was estimated to be 0.298. In-
cluding the second-order self-nonlinearities in the model sig-
nificantly increased the accuracy of the model, as shown by the
increased log likelihood value Fig. 4(A). In the KS plot for the
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Fig. 3. Feedforward kernels (block K in Fig. 1) of the first-order kernel model of a 3-input MISO dataset. These first-order kernels (k ) describe the linear
transformation of input spikes trains (x) into the hidden variable u, as functions of the time intervals between present time and the previous spikes (�). Each figure
corresponds to one input.

Fig. 4. (A) Log LikelihoodL, (B) Correlation coefficients r, and (C) KS plots, of (a) first-order kernel model, (b) second-order self-kernel model, (c) second-order
cross-kernel model, and (d) third-order self-kernel model. Straight dashed lines in KS plot are the 95% confidence bounds.

second-order self-kernel models, all values lay within the 95%
confidence bound Fig. 4(C). The maximum distance between
model values and the 45 line is 0.063. Similar KS results were
obtained in 85% of the MISO datasets (36 of 42).

C. Second-Order Cross-Kernel MISO Model

The second-order cross-kernel model has additional
cross-terms for each pair of inputs. There are 3 cross-kernels
in the 3-input model (Fig. 6, bottom row). are
asymmetric matrices describing the interactions between pairs
of spike inputs occurring on different inputs as they affect .
The noise term, was estimated to be 0.295. This inclusion
of additional nonlinearities further increased the log likelihood
Fig. 4(A). The KS plot for model results including second-order
cross nonlinearities shows that all values lay within the 95%
confidence bound Fig. 4(C). The maximum distance between

model values and the 45 line is 0.061. All MISO datasets
showed similar results (42 of 42).

D. Third-Order Self-Kernel MISO Model

The third-order self-kernel model includes additional
third-order terms for each input (Fig. 7, bottom 3 rows).
are symmetric matrices describing the interac-
tion between triplet of spikes from the same input as they affect

. Because the third-order kernel has a four dimensional data
structure, only “slices” of the third-order kernel, or third-order
kernel for a selected “third” inter-spike interval, are shown
here. In Fig. 7, are shown for 3 selected time lags (20, 40
and 60 ms; rows 4–6). The noise term, was estimated to be
0.295. The third-order self-kernel model has the highest log
likelihood value of the four models [Fig. 4(A)]. The KS plot
for the third-order model results displays values that are the
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Fig. 5. Feedforward kernels of the second-order self-kernel model. First row: first-order kernels (k ); second row: second-order self-kernels (k ). These
kernels describe the pair-wise nonlinear interactions between spikes of the same input as they affect the hidden variable u. They are functions of the time
intervals between present time and the previous pairs of spikes of the same input (� and � ). Each column of kernels corresponds to one input.

Fig. 6. Feedforward kernels of the second-order cross-kernel model. First row: first-order kernels (k ); second row: second-order self-kernels (k ); third
row: second-order cross-kernels (k ). These kernels describe the pair-wise nonlinear interactions between spikes of different inputs as they affect the hidden
variable u. They are functions of the time intervals between present time and the previous pairs of spikes of different inputs (� and � ).

closest to the 45 line [Fig. 4(C)]. The maximum distance
between model values and the 45 line is 0.056. All MISO
datasets showed similar results (42 of 42).

Feedback kernels of the four models are shown in Fig. 8.
The for all nonlinear models showed a similar shape, with a
negative phase followed by a positive overshoot.
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Fig. 7. Feedforward kernels of the third-order self-kernel model. First row: first-order kernels (k ); second row: second-order self-kernels (k ); third row:
second-order cross-kernels (k ); fourth to sixth rows: slices of third-order self-kernels (k ). These kernels describe the triplet-wise nonlinear interactions be-
tween spikes of the same input as they affect the hidden variable u. They are functions of three time intervals (� ,� , and � ).

E. Model Prediction

All models described in this paper predict output (CA1)
spike trains stochastically. Fig. 9 shows two trials of simula-
tion with identical input spike trains . The hidden variable

was deterministically predicted by the feedforward kernels
given input . Due to the randomly generated noise sequence,
membrane potential and consequently the predicted output
spike train show cross-trial variations (Fig. 9, trials A and B).
The similarity between predicted output and actual output
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Fig. 8. Feedback kernels (h) of (a) first-order kernel model, (b) second-order
self-kernel model, (c) second-order cross-kernel model, and (d) third-order self-
kernel model. h has a negative peak followed by a positive overshoot in all three
nonlinear kernel models (b, c, and d). It describes the linear transformation of
the output spike into the “after-potential” (a), as a function of the time interval
between present time and previous output spikes (�).

Fig. 9. Simulating output spike train with a MISO model. The hidden vari-
able u was deterministically calculated from the input spike trains (x) and the
feedforward kernels (K). Randomly generated white noise sequences were then
added to u. Due to the stochastic nature of the model, different w and output
spike trains (ŷ and ŷ ) were derived in trials of simulation (Trials A and B).
y is the actual output spike train.

was quantified with a correlation measure involving a Gaussian
kernel smoothing procedure. Correlation coefficients were ex-
pressed as functions of the Gaussian smoothing kernel standard
deviation (see Section II). Consistent with KS plot results,

results showed that the nonlinear kernel models were signifi-
cantly more accurate than the linear kernel model in the whole
range of [2–40 ms; Fig. 4(B)].

F. Predicting Spatio-Temporal Patterns With MIMO Models

Finally, MIMO kernel models were built by combining the in-
dividually identified MISO models. Each MISO model was vali-
dated and evaluated with a separate KS plot and correlation mea-
sure. Fig. 10 shows the second-order self-kernel MIMO model
prediction for a 16-input, 7-output dataset. Results showed that
the MIMO model successfully predicted the CA1 spatio-tem-
poral pattern based on CA3 inputs, i.e., the MIMO kernels suffi-
ciently capture the spatio-temporal pattern transformation from
CA3 to CA1. MIMO models were successfully estimated for all
animals (6 of 6).

IV. DISCUSSION

In sensory and other higher cortical brain regions, informa-
tion is coded in the population activity of neurons. Any one
neuron responds primarily to one feature of a larger set of fea-
tures; it is the larger set of features that more accurately defines
the “function” or “representation” of the population. The re-
sponse of a single neuron to a given feature takes the form of a
time series of action potentials, or a temporal pattern. Thus, the
representation of the population takes the form of a spatio-tem-
poral pattern. Understanding how the brain processes informa-
tion requires understanding how spatio-temporal patterns of ac-
tivity are progressively altered as “ensemble representations”
propagate through the major sensory and higher cognitive path-
ways of the brain. Because the mechanisms underlying synaptic
transmission are inherently nonlinear, achieving this goal re-
quires methods for mathematical modeling nonlinear transfor-
mations of multiple point processes. Ultimately, the nonlinear,
multiple-input, multiple-output model introduced here repre-
sents a critical step in realizing neural prostheses to replace dam-
aged subregions of the hippocampus or any other central brain
region. Prostheses for central brain regions many synapses re-
moved from sensory transducers and motor effectors must in-
clude the very class of model introduced here, namely, one that
replaces the transformation of multiple inputs into multiple out-
puts, where the inputs constitute the activity of afferents prior
to the region of damage, and the outputs constitute the activity
of neurons efferent to the region of damage.

Achieving a clinically viable prosthetic system that can
replace the computational function of a region of hippocampus
(or neocortex) requires more than the multiple-input, mul-
tiple-output model shown here. First, the model presented
in the present paper is meant primarily to demonstrate the
methodology and the feasibility for capturing up to third-order
nonlinear dynamics for point-process input-output data. The
present model could not be used in the context of a neural
prosthesis until its generality has been tested fully, its sensi-
tivity to context has been added, and modifiability of the model
parameters has been included to account for learning [58]–[60].
In addition, fundamental issues related to hardware implemen-
tation and sensing/stimulating capability and biocompatibility
will have to be resolved [12]. We view the present method-
ology as a significant step in the development of a prosthesis
capable of replacing higher-thought processes such as memory,
language, and planning/execution functions.

Here we introduced a physiologically plausible nonlinear dy-
namic kernel model for predicting an output spatio-temporal
pattern of action potential events as a function of an input spatio-
temporal pattern of action potential events for a synaptically
connected population of neurons. We further demonstrated that
this approach could be successfully applied to multi-site spike
train data recorded from the hippocampus of behaving animals,
specifically, CA3 spike train to CA1 spike train transforma-
tions during a memory task (DNMS) for the rat. Our results
show that these transformations have significant nonlinearities
that require at least second-order feedforward kernels. Models
with more nonlinear terms, e.g., second-order cross-kernels and
third-order self-kernels, resulted in a better fit to the output spike
trains. Our results also show the existence of significant feed-
back, output spike-triggered dynamics of CA1 neurons.
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Fig. 10. Predicting output CA1 spatio-temporal pattern with a MIMO model. Spike trains were spatially and temporally interpolated for better visualization.

In the current model, intrinsic neuronal noise and the con-
tribution of unobserved inputs were modeled as Gaussian white
noise. Adding such a noise term to the model has important con-
sequences. First, model predictions become stochastic. When
the model is stochastic, directly matching the actual output to
the predicted output is not a valid evaluation of the accuracy, or
goodness-of-fit, of the model. Instead, it is more appropriate to
evaluate such a model with respect to the statistical properties
of its output, e.g., using a conditional firing intensity function.
In general, comparisons between the precise timings of the ac-
tual output and predicted output are meaningful only when the
system has a low noise level, i.e., small intrinsic neuronal noise
and recording of the majority of inputs and, thus, can be ade-
quately described by a deterministic model. These conditions
are not met in our modeled system, especially given that only a
small subset of system inputs, i.e., afferent CA3 spike trains, can
be recorded for a given population of CA1 neurons. A second
consequence of the noise term is that a maximum-likelihood
function can be formulated to estimate model parameters. It is
important to emphasize that, although after Laguerre expansion,
hidden variables and are linearly related to the convolutions
(and the products of those convolutions in the nonlinear models)
of the inputs with Laguerre basis functions , and the noise
is modeled as Gaussian, the maximum-likelihood estimation of
the expansion coefficients cannot be reduced to least-squares
linear regression. The reason is that the system output consists
of all-or-none spikes generated by thresholding the continuous
hidden variable. The likelihood of observing actual output in-
volves the error function, i.e., the integral of the Gaussian func-
tion, rather than the Gaussian function itself (see Section II-D).
If the hidden variable could be obtained experimentally, e.g.,
from intracellular recordings of CA1 neurons, then could be
more easily estimated using a linear regression technique.

The assumption of whiteness of the noise process in the
model could be inaccurate under some circumstances, e.g.,
when the input spike trains are weakly correlated with the
output spike train and the unobserved inputs have strong auto-
correlations. We plan on considering the use of noise kernel(s)

to model the correlated noise in future work. In the current
model configuration scheme, the MIMO system was modeled
as a series of MISO systems. This strategy works well but
could be modified to be more efficient for a larger number of
correlated outputs, e.g., using a canonical correlation analytical
approach to reduce the dimensionality of both the input and the
output simultaneously.

Interestingly, our results clearly revealed that different
CA3-CA1 neuronal connections can exhibit markedly different
forms of nonlinear dynamics, as represented by the very dif-
ferent first- and second-order kernel shapes. All of the neurons
included in the present study were presumed hippocampal
pyramidal neurons and interneurons, based on their firing rates
and the location of recorded neurons relative to the physiolog-
ically identified pyramidal cell layer. This finding indicates
a significant functional heterogeneity among hippocampal
neurons and their synaptic circuitry, and demands further,
systematic exploration of the anatomical, physiological, and
other mechanisms underlying these differences to gain more
insights into the re-encoding function of the hippocampus.
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