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Abstract

This paper presents a general methodological framework for the practical modeling of neural systems
with point-process inputs (sequences of action potentials or, more broadly, identical events) based on
the Volterra and Wiener theories of functional expansions and system identification. The paper clarifies
the distinctions between Volterra and Wiener kernels obtained from Poisson point-process inputs. It shows
that only the Wiener kernels can be estimated via cross-correlation, but must be defined as zero along the
diagonals. The Volterra kernels can be estimated far more accurately (and from shorter data-records) by
use of the Laguerre expansion technique adapted to point-process inputs, and they are independent of
the mean rate of stimulation (unlike their P–W counterparts that depend on it). The Volterra kernels
can also be estimated for broadband point-process inputs that are not Poisson. Useful applications of this
modeling approach include cases where we seek to determine (model) the transfer characteristics between
one neuronal axon (a point-process �input�) and another axon (a point-process �output�) or some other mea-
sure of neuronal activity (a continuous �output�, such as population activity) with which a causal link exists.
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1. Introduction

Modeling studies of neural systems that are stimulated by temporal sequences of action poten-
tials (spike trains) can be placed in the general mathematical framework of functional expansions,
due to the intrinsic system nonlinearities [1–3,7–9,12,10,13,11,14,17–19]. When these action poten-
tials are idealized as impulses of fixed intensity (Dirac delta functions in continuous time or Kro-
necker deltas in discrete time), they can be represented mathematically in a stochastic context by
�point processes�: a specific class of random processes that are formed by sequences of identical
impulses representing random, instantaneous, and identical events.
These modeling studies must be properly placed in a stochastic context since actual experiments

of neural systems are burdened inevitably by systemic or measurement noise and other uncontrol-
lable factors introducing variations in the experimental data that are viewed as stochastic pro-
cesses. Furthermore, the digital processing of the experimental data necessitates analysis in a
discrete-time framework, although the actual biological processes take place in continuous time.
Proper discretization of a sequence of action potentials requires that the sampling interval (bin-
width) be approximately equal to the refractory period in order to allow the representation of
each continuous-time action potential by one and only one Kronecker delta in the respective
bin (the intensity of the latter ought to be the integrated area under the action potential divided
by the bin-width T).
Thus, in practice, each sequence of action potentials is represented by a discrete-time point-process
vðnÞ ¼ A
XK
i¼1

dðn� niÞ; ð1Þ
where n denotes the discrete-time index (t = nT), A is the intensity of the Kronecker delta and ni is
the time-index of the ith event (i.e., discretized timing of the ith action potential). Note that this
process has K events over the available data record of N bins, i.e., the mean rate of this point-pro-
cess is (K/N). We seek to address the problem of neural system modeling from input–output data,
where the system output y(n) may be continuous or a point-process but the system input v(n) is
always a point-process described as in Eq. (1).
The potential utility of this modeling approach to the study of actual neural systems is found in

those cases where we seek to determine (model) the transfer characteristics between one neuronal
axon (a point-process �input�) and another axon (a point-process �output�) or some other measure
of neuronal activity (a continuous �output�, such as population activity) with which a causal link
exists (or must be confirmed). Another set of potential applications with point-process inputs are
neural prostheses and in vitro studies (like the original studies in the hippocampal slices by Berger,
Sclabassi and their associates that provided the initial motivation for this type of modeling work).
2. The modeling problem

In the general formulation of the modeling problem, we seek an explicit mathematical descrip-
tion of the causal functional F that maps the input past (and present) upon the present value of the
output,
yðnÞ ¼ F ½vðn0Þ; n0 6 n�. ð2Þ
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For a stationary system with finite memory, the functional F may be represented (or approxi-
mated) by the discrete-time Volterra series [8,20]
yðnÞ ¼ k0 þ
XM
m¼0

k1ðmÞvðn� mÞ þ
XM
m1¼0

XM
m2¼0

k2ðm1;m2Þvðn� m1Þvðn� m2Þ þ 	 	 	 ; ð3Þ
where {k0,k1,k2, . . .} represent the Volterra kernels of the system that fully describe the functional
F, andM denotes the finite system memory. Thus, the modeling problem becomes one of estimat-
ing as many kernels as deemed practical or necessary for satisfactory output prediction from
experimental input–output data v(n) and y(n).
For the point-process input of Eq. (1), the system output is given by Eq. (3) as
yðnÞ ¼ k0 þ A
XK
i¼1

k1ðn� niÞ þ A2
XK
i¼1

XK
j¼1

k2ðn� ni; n� njÞ þ 	 	 	 ; ð4Þ
where the high-order terms (i.e., second-order and above) are non-zero only for jni � njj 6M, and
(i, j) represent all pairs of event indices. Clearly, the convergence of this functional power series
depends, in general, on the specific system characteristics that distinguish low-order from high-
order systems. In practice, rapid convergence is desirable, as it allows truncation of the Volterra
series to a few terms for satisfactory model accuracy and yields relatively concise models.
The search for a kernel estimation method that minimizes the model prediction error (as mea-

sured by the output prediction mean-square error) leads us to the construction of an orthogonal
hierarchy (series) of functionals using a variant of the Gram–Schmidt orthogonalization proce-
dure, in order to decouple the various kernels and secure maximum reduction of the approxima-
tion error at each successive model order – analogous to the Wiener series in the case of
continuous-input systems.
Critical for this orthogonalization procedure is the selection of the proper input that tests the

system as densely as possible over the space of all possible inputs. Thus, for stochastic inputs,
ergodicity is required as well as appropriate autocorrelation properties of all orders up to twice
the highest-order functional (kernel) of a given system [7]. For systems with continuous inputs,
such an appropriate test input is Gaussian white noise [21] or quasi-white approximations suitable
for experimental investigations [7]. For systems with point-process inputs, the proper input is the
Poisson process, defined in the discrete-time context as a sequence of independent events (spikes)
with fixed probability of occurrence k at each time bin T [4,5,15]. Thus, for a discrete-time Poisson
input v(n), we have the following moments:
E½vrðnÞ� ¼ kAr ð5Þ

and autocorrelation functions
E½vðn1Þvðn2Þ . . . vðniÞ� ¼ kjAi; ð6Þ

for j distinct time indices (n1, . . . , ni), due to the statistical independence of the values of the Pois-
son process in each time bin where E[ Æ ] denotes the expected value or ensemble-average. These
statistical properties are critical for the development of the orthogonal functional series, which
we term the Poisson–Wiener (P–W) series. The development of the P–W series is greatly simplified
if we use the de-meaned input
zðnÞ ¼ vðnÞ � kA. ð7Þ
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Then the P–W orthogonal functionals {Qj}, which involve a new set of characteristic P–W
kernels {pj} and are constructed by a Gram–Schmidt orthogonalization procedure, take the form
Q0 ¼ p0; ð8Þ

Q1½zðnÞ; p1� ¼
XM
m¼0

p1ðmÞzðn� mÞ; ð9Þ

Q2½zðnÞ; p2� ¼
XM
m1¼0

XM
m2¼0

p2ðm1;m2Þzðn� m1Þzðn� m2Þ

� l3
l2

XM
m¼0

p2ðm;mÞzðn� mÞ � l2
XM
m¼0

p2ðm;mÞ; etc: ð10Þ
where the orthogonality of the functionals is defined by E[Qi(n)Qj(n)] = 0, for i5 j, and
yðnÞ ¼
X1
i¼0

Qi½zðnÞ; pi�. ð11Þ
Note that these orthogonal functionals depend on the statistical central moments,
l1 , E½zðnÞ� ¼ 0; l2 , E½z2ðnÞ� ¼ kð1� kÞA2; l3 , E½z3ðnÞ� ¼ kð1� kÞð1� 2kÞA3; etc:

Most importantly, we note the following key relation:
l4 , E½z4ðnÞ� ¼ l22 þ
l23
l2

; ð12Þ
that attains critical importance in the sequel.
By tracing Wiener�s steps in the continuous case with Gaussian white-noise input, we may ob-

tain the unknown P–W kernels {pi} by evaluating the co-variances between the output y(n) and
known orthogonal �instrumental� P–W functionals of the input z(n) – i.e., evaluating the �ortho-
gonal projections� of the output signal upon each of these �instrumental� orthogonal functionals
that form an orthogonal �coordinate system� in the functional space of the system. If these �instru-
mental� functionals are chosen to be simple shift-operators, then this approach is an adaptation of
the cross-correlation technique [6] used extensively for continuous-input systems, which was first
proposed by Krausz [4] for point-process input systems in a continuous-time formulation and
studied in discrete-time by Scaringe [16].
The present formulation yields the properly weighted cross-correlation formulae and shows

that the diagonal values of the P–W kernels must be defined as zero for the P–W series – a result
that was correctly but heuristically derived by Krausz. The latter is proven for the second-order
kernel by the identity of Eq. (12), as shown below.
For the zeroth-order kernel (term), we must evaluate the expected value of the output signal,

i.e., the co-variance between the output and a unity constant (zeroth-order instrumental
functional),
p0 ¼ E½yðnÞ�; ð13Þ

i.e., p0 represents the average output value or the �orthogonal projection� of the output on a unity
constant.
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Likewise, for the evaluation of the first-order kernel, we consider the known first-order �instru-
mental functional�: I1(n ;m) = z(n � m), which has the structure of a first-order P–W functional
with an impulsive kernel d(‘ � m) (i.e., a Kronecker delta located at m), and is orthogonal for each
m to all functionals Qi(n) for i5 1. Thus
E½yðnÞzðn� mÞ� ¼ E½Q1ðnÞzðn� mÞ� ¼ l2 	 p1ðmÞ; ð14Þ

since E[z(n � k)z(n � m)] = l2d(k � m), and therefore
p1ðmÞ ¼
1

l2
E½yðnÞzðn� mÞ�. ð15Þ
For the evaluation of the second-order kernel, we consider the �instrumental functional�
I2ðn;m1;m2Þ ¼ zðn� m1Þzðn� m2Þ �
l3
l2

zðn� m1Þdðm1 � m2Þ � l2dðm1 � m2Þ
� �

;

which has the structure of a second-order P–W functional with a kernel d(‘1 � m1)d(‘2 � m2). The
co-variance between y(n) and I2(n ;m1,m2) eliminates all Qi functionals for i5 2 and yields (after
considerable analytical manipulations),
E½yðnÞI2ðn;m1;m2Þ� ¼ E½Q2ðnÞI2ðn;m1;m2Þ�

¼ 2l22p2ðm1;m2Þ þ dðm1 � m2Þ l4 � 3l22 �
l23
l2

� �
p2ðm1;m2Þ. ð16Þ
The key (and surprising) realization is that, because of the identity of Eq. (12) relating l2, l3,
and l4 for any Poisson process, the co-variance in Eq. (16) for m1 = m2 is zero! In other words, the
�orthogonal projection� of the output signal y(n) upon the signal: [z2(n � m) � (1 � 2k)AÆ
z(n � m) � k(1 � k)A2], is zero for all m (i.e., they are orthogonal). Therefore, the diagonal values
of the second-order P–W kernel p2(m,m) must be defined as zero. Thus
p2ðm1;m2Þ ¼
1

2l22
E½yðnÞzðn� m1Þzðn� m2Þ�; for m1 6¼ m2;

0; for m1 ¼ m2.

8<
: ð17Þ
In general, the rth-order P–W kernel is obtained by the cross-correlation formula
prðm1; . . . ;mrÞ ¼
1

r!lr
2

E½yðnÞzðn� m1Þ . . . zðn� mrÞ�; for distinct ðm1; . . . ;mrÞ;

0; otherwise;

8<
: ð18Þ
where l2 = k(1 � k)A2, is the second moment of z(n).
The key definition that the diagonal values of the P–W kernels be zero leads to considerable

simplification of the form of the P–W functionals – e.g., eliminating two terms of Q2 in Eq.
(10) since p2(m,m) 
 0. Thus, the P–W series takes the simpler form
yðnÞ ¼ p0 þ
X
m

p1ðmÞzðn� mÞ þ
X
m1

X
m2

p2ðm1;m2Þzðn� m1Þzðn� m2Þ

þ
X
m1

X
m2

X
m3

p3ðm1;m2;m3Þzðn� m1Þzðn� m2Þzðn� m3Þ þ 	 	 	 ; ð19Þ
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identical to the Volterra series form for the de-meaned input z(n), with the important distinction
that the diagonal values of the P–W kernels be zero by definition. This result was anticipated by
Krausz [4], although his estimation formulae are different than the ones provided below in Eq.
(20).
For ergodic and stationary processes, the ensemble averaging can be replaced by time-averag-

ing over infinite data-records. Since, in practice, we only have the benefit of finite data-records, the
aforementioned time-averaging is limited to a finite domain of time and results in �estimates� of the
precise kernels. The accuracy of these estimates is, of course, a matter of critical practical concern;
especially as it relates to key experimental parameters such as data record length, bandwidth, etc.
The P–W kernel estimation formulae can be adapted to the specific input form of Eq. (1) by uti-
lizing the properties of the Kronecker delta
p̂0 ¼
1

N

XN
n¼1

yðnÞ ¼ KA
N

¼ kA;

p̂1ðmÞ ¼
A

Nl2

XK
i¼1

yðni þ mÞ � kA
l2

p̂0;

p̂2ðm1;m2Þ ¼

A2

2Nl22

XK
i1¼1

XK
i2¼1

1

2
½yðni1 þ m1Þ þ yðni2 þ m2Þ�

(

� d½ðni1 � ni2Þ � ðm2 � m1Þ� � k
PK
i¼1

½yðni þ m1Þ

þ yðni þ m2Þ� þ k2Np̂0

)
; for m1 6¼ m2;

0; for m1 ¼ m2;

8>>>>>>>>>>><
>>>>>>>>>>>:
etc:

ð20Þ
reducing the multiplication operations of cross-correlation to additions. Note that the parameter
k used in the expressions above is estimated in practice as, k = K/N.
The P–W series of Eq. (19) can be expressed in terms of the original point-process input v(n) by

use of Eq. (7). The resulting expression for the system output in terms of the P–W kernels and the
original input can be used to derive the Volterra kernel approximation
k̂0 ¼
X1
r¼0

ð�kAÞr
X
m1

. . .
X
mr

prðm1; . . . ;mrÞ; ð21Þ

k̂1ðmÞ ¼
X1
r¼1

rð�kAÞr�1
X
l1

. . .
X
lr�1

prðm; l1; l2; . . . ; lr�1Þ; ð22Þ

k̂2ðm1;m2Þ ¼
X1
r¼2

r!
2!ðr � 2Þ! ð�kAÞr�2

X
l1

. . .
X
lr�2

prðm1;m2; l1; . . . ; lr�2Þ ð23Þ

etc:
Evidently, the diagonal values of these Volterra kernel approximations are also zero for systems
with Poisson point-process inputs, reflecting the fact that a point-process input (having fixed spike
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values) is intrinsically unable to probe (and therefore estimate) the kernel diagonal values. The
kernels of Eqs. (21)–(23) are not identical to the Volterra kernels of the system, even away from
the diagonals where they are defined to be zero. We will refer to these kernels as the Poisson–
Volterra (P–V) kernels in order to make the important distinction with both the Volterra and
the P–W kernels. This distinction applies also to the corresponding functional series. For instance,
the first-order P–V kernel incorporates the main diagonals of all higher order Volterra kernels, in
addition to the first-order Volterra kernel, i.e.,
k̂1ðmÞ ¼ k1ðmÞ þ Ak2ðm;mÞ þ A2k3ðm;m;mÞ þ 	 	 	 . ð24Þ

Likewise, the second-order P–V kernel incorporates the secondary diagonals of all higher order

Volterra kernels, i.e.,
k̂2ðm1;m2Þ ¼ k2ðm1;m2Þ þ 3Ak3ðm1;m2;m2Þ þ 	 	 	f g½1� dðm1 � m2Þ�. ð25Þ

The resulting P–V series attains the following meaning: the zeroth-order term is the average

value of the output; the first-order term accounts for the responses to individual input impulses;
the second-order term accounts for interactions between pairs of input impulses; the third-order
term accounts for interactions among triplets of input impulses, etc. One could not hope for a
more orderly and elegant mathematical model of the hierarchy of nonlinear interactions of
point-process inputs.
We must emphasize that, in actual applications, the obtained model should be ideally put in

the Volterra form, since the Volterra kernels are independent of the specific parameters (k,A)
of the Poisson input – unlike the estimated P–W kernels which depend on k and A, or the P–V
kernels which depend on A. However, the Volterra kernels cannot be obtained in practical
applications, unless we can vary the impulse strength A experimentally in order to probe the
diagonal values of the high-order kernels. Thus, in many practical applications, we may only
be able to obtain the P–V kernels (directly or indirectly from the P–W kernels) which yield a sys-
tem characterization (model) that does not depend on the specific parameter k of the Poisson
point-process input. Note that for a finite-order system, the highest order P–V and P–W kernels
are identical.
Eqs. (21)–(23) can be used to reconstruct the P–V kernels of a system using a complete set of P–

W kernel measurements. They also suggest a practical means for estimating the nonlinear order of
the required model by varying the input-specific parameter (k) and observing the resulting effects
on the obtained P–W kernels. Since the latter are power series (or polynomial) expressions of (k)
with coefficients dependent on the respective P–V kernels, an indication of the significant high-
order terms can be obtained (recall that the P–V kernels are independent of k).
Having established the proper definitions and meaning for the P–V and P–W kernels, we now

turn to the key issue in actual applications: the accurate and efficient estimation of P–W and P–V
kernels from input–output data.
3. Kernel estimation

The cross-correlation technique (CCT) has been the first to be used for kernel estimation in
actual applications [2,6,4,5,7,17–19]. Although it has been used extensively, it has been shown
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to require long data-records for reasonable accuracy of the kernel estimates – a serious burden in
actual experimental studies where the preparation can be kept stable only for limited time. A far
better estimation method is proposed here, that is based on Laguerre expansions of the kernels
and least-squares fitting procedures. This method was originally developed and applied to systems
with continuous inputs, where it was shown to yield far superior kernel estimates (relative to the
CCT) even for shorter data records [12].
It is critical to note that the CCT yields the P–W kernel estimates, however the Laguerre expan-

sion techniques may yield either the Volterra or the P–V kernel estimates depending on whether
the Laguerre expansion includes or not the diagonal values, respectively. In the former case, the
kernel estimates at the diagonal points are interpolations (using the respective set of Laguerre
functions) between the estimates at the nearest off-diagonal points.
This Laguerre expansion technique (LET) employs the orthonormal basis of Laguerre func-

tions {bj(m)} to expand the system kernels, and then uses least-squares fitting to estimate the req-
uisite expansion coefficients. Thus, we may consider the Laguerre expansions of the Volterra
kernels
k1ðmÞ ¼
XL

j¼0
c1ðjÞbjðmÞ; ð26Þ

k2ðm1;m2Þ ¼
XL

j1¼0

XL

j2¼0
c2ðj1; j2Þbj1ðm1Þbj2ðm2Þ ð27Þ

etc:
Substitution of these kernel expansions into the Volterra series of Eq. (3) results in the modified
Volterra model
yðnÞ ¼ k0 þ
XL

j¼0
c1ðjÞmjðnÞ þ

XL

j1¼0

XL

j2¼0
c2ðj1; j2Þmj1ðnÞmj2ðnÞ þ 	 	 	 ; ð28Þ
where
mjðnÞ ¼
XM
m¼0

bjðmÞvðn� mÞ. ð29Þ
Note that, if we seek the estimation of the P–V kernels, then the kernel expansion should
employ not the regular Laguerre functions previously used for Volterra kernel expansion, but
the �associated Laguerre functions� of first order which allow the representation of the zero-valued
diagonals of the high-order P–V kernels. This is the main innovation with respect to the use of
LET for P–V kernel estimation.
The expansion coefficients c1, c2, etc. of Eq. (28) are estimated by least-squares fitting of the

input–output data (note that the signals {mj(n)} are known since they are the convolutions of
the input v(n) with the Laguerre functions). The efficacy of this approach relies on the fact that
many real system kernels can be represented adequately with a relatively small number of
Laguerre functions, i.e., L�M [12]. An illustrative example is provided below, using computer-
simulated data.
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4. Illustrative example

To demonstrate the efficacy of LET and its superior performance relative to CCT, we consider
a second-order system defined by the first-order and second-order Volterra kernels shown in Fig.
1(a) (M = 50). This system is simulated for a Poisson process input with k = 0.1 over N = 2048
data-points of a training dataset (A = 1, T = 1).The first-order and second-order P–W kernel esti-
mates using CCT on this training dataset are shown in Fig. 1(b) and demonstrate the fact that the
CCT estimates are rather poor. Note that the LET estimates (for L = 10) are identical to the ac-
tual P–V kernels in this case!
A segment of the input–output data that were used for kernel estimation (termed �the training

dataset�) and the corresponding P–W model prediction using the CCT kernel estimates of Fig.
1(b) are shown in Fig. 2, and two segments for a different input–output dataset (termed �the test-
ing dataset�) is shown in Fig. 3. As expected, the CCT model prediction is rather poor in both
cases (relative to the LET model prediction which is identical to the actual output data) and be-
comes poorer for the testing dataset (out-of-sample prediction).
Of particular interest for point-process input systems is the fact (discussed in Section 2) that the

diagonal values of the second-order Volterra kernel cannot be estimated (the P–W kernel diagonal
values are zero by definition) and that the first-order P–W kernel is distinct from its P–V counter-
part according to the expressions of Eqs. (21)–(23). For this example (see Eq. (22))
Fig. 1
(b) th
poor q
estima
k̂1ðmÞ ¼ p1ðmÞ � 2kA
XM
m0¼0

p2ðm;m0Þ ð30Þ
. (a) The first-order (top) and second-order (bottom) Volterra kernels of the simulated system (left column); and
e P–W kernel estimates obtained via CCT for an input–output dataset of 2048 data-points (right column). The
uality of the P–W kernel estimates is evident, as well as the �diagonal problem� (see text). The Volterra kernel
tes using LET are identical to the exact kernels shown in (a).



Fig. 2. Segments of the P–W model prediction using the CCT kernel estimates of Fig. 1(b) and the corresponding
output data for the training dataset. Note that the model prediction for the LET kernel estimates is identical to the
output data.

Fig. 3. Segments of the P–W model prediction using the CCT kernel estimates of Fig. 1(b) and the corresponding
output data for the testing dataset (out-of-sample prediction). Note that the model prediction for the LET kernel
estimates is again identical to the output data.
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and
p1ðmÞ ¼ k̂1ðmÞ þ 2kA
XM
m0¼0

k̂2ðm;m0Þ. ð31Þ
Since p2 
 k̂2 for all second-order systems. Note also that for a second-order system
k̂2ðm;m0Þ ¼ ½1� dðm� m0Þ�k2ðm;m0Þ. ð32Þ
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LET yields precise estimates of the P–W kernels or the P–V kernels (depending on whether we
use the de-meaned or the actual Poisson input, respectively) using a short input–output data-
record, while CCT requires much longer data-records to approach comparable performance in
the estimation of the P–W kernels (P–V kernels cannot be directly estimated via CCT). This is
a critical advantage in practice. Another important practical advantage is the fact that LET is
rather robust in the presence of noise in the output data [12].
As indicated above, the P–V kernels away from the diagonals can be reconstructed from a com-

plete set of P–W kernels. However, the diagonal values cannot be directly estimated by either of
these methods; a limitation imposed by the point-process nature of the input. The estimation of
the diagonal second-order kernel values using LET relies on interpolation based on the structure
of the Laguerre functions used for the kernel expansion.
Eqs. (24) and (25) indicate that, if the experiment can be repeated for various values of A, then

the diagonal kernel values of finite-order system can be recovered. Note that the estimation of the
diagonal values of the second-order kernels (or higher) is also possible if the input impulses have
variable amplitude. For instance, if the Poisson point-process input is amplitude-modulated by a
Gaussian white noise process, then data collected with this modified input can be analyzed using
the original LET algorithm to yield precise estimates of the Volterra kernels, including the dia-
gonal values.
5. Conclusions

This paper clarifies the distinctions between Volterra and Wiener kernels obtained from Poisson
point-process inputs, termed Poisson–Volterra (P–V) and Poisson–Wiener (P–W) kernels, respec-
tively. It shows that the diagonal values of high-order Volterra or Wiener kernels cannot be di-
rectly estimated using Poisson point-process inputs and must be defined as zero in the P–W
and P–V kernels. Only the P–W kernels can be estimated via cross-correlation. The P–V kernels
can be reconstructed from a complete set of P–W kernel estimates (see Eqs. (21)–(23)). The latter
can be estimated far more accurately (and from shorter data-records) by use of the Laguerre
expansion technique (LET) adapted to point-process inputs, rather than the conventional
cross-correlation technique. Since the P–V kernels are independent of the mean rate of stimulation
(i.e., the Poisson parameter k), they constitute the preferred set of kernels in practice. Their direct
estimation is possible via LET when the input Poisson process is not de-meaned. It is also possible
to estimate the Volterra kernels of the system via LET, when the diagonal values of the high-order
kernels can be interpolated by the Laguerre set of basis functions.
An important distinction exists between the Volterra and the P–V kernels away from the diag-

onal values, as well (recall that the P–V kernels are defined as zero along the diagonals). Eqs. (24)
and (25) describe this distinction for first-order and second-order kernels. It is a manifestation of
the fact that the diagonal values of high-order kernels �fold� onto lower order kernels for point-
process inputs. For instance, the main diagonals of all high-order kernels fold onto the first-order
kernel, as described by Eq. (24). Likewise, the secondary diagonals of all kernels of order higher
than second fold onto the second-order kernel, as described by Eq. (25), and so on. This is a
direct consequence of the impulsive nature of a point-process input. The diagonal values of the
kernels can be estimated directly only if the amplitude of the impulses is variable (e.g., random
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modulation) or, indirectly, by repeating the experiment for various values of A and combining the
results according to Eqs. (24) and (25) for finite-order systems.
Changes in the Poisson parameter k (i.e., mean rate of stimulation) lead to different P–W kernel

estimates (see Eqs. (21)–(23)) but do not alter the P–V kernel estimates which, however, depend on
the amplitude A of the input impulses (see Eqs. (24) and (25)). Note that the P–V kernels can also
be estimated via LET for non-Poisson point-process inputs, so long as the latter do not have a
strict deterministic structure (e.g., periodic) and retain broadband characteristics (e.g., natural
or spontaneous operation of the system).
It is evident from this analysis that it is preferable in practice to estimate directly the P–V or the

Volterra kernels using LET for any Poisson input parameter k. Most importantly, kernel estima-
tion accuracy is much higher using LET rather than cross-correlation. Since the P–V kernels are
independent of k but depend on A, repeated experiments with different (but fixed) values of A can
yield insight into the diagonal kernel values based on Eqs. (24) and (25).
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