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Abstract—This article presents results of the use of a novel in response to changes in local vascular pressure. The
methodology employing principal dynamic modé3DM) for TGF mechanism is governed by flow-rate dependent

modeling the nonlinear dynamics of renal autoregulation in . . .
rats. The analyzed experimental data are broadéar8.5 Ha concentration changes in tubular fluisensed at the dis

blood pressure-flow data generated by pseudorandom forcingt@l tubular site, the macula densand alters the imped-
and collected in normotensive and hypertensive rats for two ance characteristics of the preglomerular vessels through
levels of pressure forcingas measured by the standard devia- still unknown signals that affect vascular smooth muscle.
tion of the pressure fluctuatipriThe PDMs are computed from  The frequency response characteristics of the two mecha-
first-order and second-order kernel estimates obtained from the 7.18

data via the Laguerre expansion technique. The results demon-.nlsms have been studied in ra ;"~"and the consensus

strate that two PDMs suffice for obtaining a satisfactory non- IS that the myogenic mechanism is faster and is associ-
linear dynamic model of renal autoregulation under these con- ated with a resonancélecreased impedancever the
ditions, for both normotensive and hypertensive rats. frequency range from 0.08 to 0.16 Hz. The TGF mecha-
Furthermore, the two PDMs appear to correspond to the two pnism is active for frequencies below 0.08 Hz and is

main autoregulatory mechanisms: the first to the myogenic and : .
the second to the tubuloglomerular feedb&E&F) mechanism. associated with ? S“Of‘g. reson.anc?e .between 0'0.2 and
0.05 Hz, where it exhibits an intrinsic, self-sustained

This allows the study of the separate contributions of the two L ’ .
mechanisms to the autoregulatory response dynamics, as welloscillation.” The combined action of the two mecha-

as the effects of the level of pressure forcing and hypertension nisms attenuates the effect of blood pressure fluctuations
on the two distinct autoregulatory mechanisms. It is shown that g plood flow at frequencies less than 0.08 Hz, where

the myogenic mechanism has a larger contribution and is af- : : :
fected only slightly, while the TGF mechanism is affected most of the naturally occurring power is found in the

considerably by increasing pressure forcing or hypertension Plood pressure spectruth.
(the emergence of a second resonant peak and the decreased Recent studies in rats have used externally imposed
relative contribution to the response flow signal© 1999 broadband arterial pressure fluctuations to separate the
Biomedical Engineering Societ{S0090-696¢9)00201-§ dynamical properties of the two renal autoregulatory
mechanism&*1® The advantages of broadband forcing
Keywords—Nonlinear modeling, Volterra kernels, Laguerre 55 an excitation in linear and nonlinear system identifi-
expansion. cation have been well documented, and the associated
modeling techniques have gained in popularity over the
last 25 year§-111314Suppression of noise and reduction
of experimentation time are among these advantages.

renal autoregulatiorti.e., the process by which vascular Another major advantage is the ability of this approach

hemodynamic impedance is adjusted to minimize fluc- 1© discern quantitatively the linear and nonlinear dy-
tuations in blood flow caused by fluctuations in blood Namic characteristics of the system under study by means
pressurg the myogenic mechanism and the tubuloglom- of Volterra} kemels: i

erular feedback TGF).>~7 The myogenic mechanism is In previous papers, we presented nonlinear Volterra

vascular in nature and causes changes in the blood vesserInOdels of renal autoregulation in rats and explored the

diameter and mechanical characteristiesy., stiffness physiological interpretation of the obtained Volterra
kernels® A third-order Volterra model was shown to be

- _ adequate in representing the dynamic relationship be-
Address correspondence to Prof. Vasilis Marmarelis, Department of : .
Biomedical Engineering, University of Southern California, University tween renal blood flow ang arterial pressure_ ina b_road'
Park—OHE 500, Los Angeles, CA90089-1451. Electronic mail: band context up to 1 HZ!® The effects of increasing
vzm@bmsrs.usc.edu power in broadband pressure forcing were examined and
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INTRODUCTION

Two primary mechanisms are thought responsible for
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shown to cause increased damping of the system dynam- Measurements of blood flow and blood pressure were
ics in a manner consistent with the presence of nonlinear made while broadband fluctuations were induced in the
compressivesigmoid feedback? The nonlinear interac-  arterial blood pressure by a bellows pump. The linear
tion between the two primary autoregulatory mechanisms motor that moved the bellows was driven by a power
(the myogenic and TGRvere examined by means of the amplifier controlled by a personal computer through a
experimentally obtained second-order and third-order digital-to-analog(D/A) converter. The input to the D/A
Volterra kernelé. Distinct differences in such nonlinear converter was a constant-switching-pace symmetric ran-
interactions were observed between normotensive anddom signal(CSRS, which exhibits the spectral proper-
hypertensive rats. Specifically, such interaction was most ties of band-limited white noistTwo different levels of
evident for low-level forcing in normotensive rats. The arterial pressure forcingmeasured by the standard de-
nonlinear dynamic characteristics of each individual viation of the resulting pressure fluctuatiprvsere used.
mechanism changed for different levels of pressure forc- The power levels varied somewhat from experiment to
ing and between normotensive and hypertensive’rfts.  experiment, but two clusters of arterial pressure levels

Although these studies represent significant progresswere roughly formed for both the SDRs and the SHRs.
in understanding the nonlinear dynamic characteristics of ~The renal blood flow and arterial pressure signals
renal autoregulation under broadband conditions, the were sampled over 256 s with a sampling rate of 2
subtle changes in the characteristics of the individual samples/gNyquist frequency of 1 Hg after digital low-
mechanismgmyogenic and TGFwith varying pressure  pass filtering to avoid aliasing. For the purposes of this
forcing level or between normotensive and hypertensive study, we chose to further limit the data bandwidth to 0.5
rats require further analysis. This is pursued in this ar- Hz (down sampling by a factor of 2 after low-pass fil-
ticle by means of the recently introduced “principal dy- tering at 0.5 Hzin order to focus more on the frequency
namic mode” (PDM) analysis for nonlinear physiologi- band of interest to autoregulation. Recall that above 0.4
cal system$® It is shown that two PDMs obtained from Hz the system exhibits “all-pass” characteristics with no
the experimentally measured kernels appear to corre-autoregulation dynamics in evidence. Each time series
spond to the two autoregulatory mechanisms in terms of Was subjected to second-degree polynomial trend re-
the respective frequency band of operation—a fact that moval. In addition, each data record containing 256 data
allows a more precise analysis of the aforementioned Points was demeane8y subtracting out the mean vajue
changes in the characteristics of the two mechanisms. and normalized by dividing with the standard deviation

In the following section the experimental preparation value of each data record. Thus, regardless of differences
and data collection procedures are described briefly. Thein the arterial pressure forcings, all analyzed data sets
Methodology section contains an outline of the PDM had zero mean and unit variance since our interest is
approach. In the Results section the results obtained ardocused on the dynamic characteristics of autoregulation,
presented, and the main conclusions are summarized inirrespective of relative scaling factors from experiment to
the final section. experiment.

DATA COLLECTION

. METHODOLOGY
Experiments were performed on three male spontane-
ously hypertensive ratSHR9 and on three age-matched The general methodology of nonlinear modeling of
male normotensive Sprague-Dawley ré&DR9 weigh- dynamic systems using functional expansions and ker-

ing 250—350 g. The animals had free access to food andnels has its origin in Wiener's pivotal monograph that
tap water prior to the experiments. The experimental suggested the use of Gaussian white n¢B@/N) as the
procedure is described in detail elsewh&te® In brief, effective test input for nonlinear system identification
the rats were anesthetized with halothane administered inbased on a hierarchy of nonlinear functionalthe

an oxygen-nitrogen mixture and were artificially venti- Wiener series?! Volterra’s pivotal contribution was in
lated after the administration of a muscle relaxéguil- suggesting, much earlier, the use of functional expan-
lamine triethiodideé The abdomen was opened through a sions(the Volterra serigsto represent unknown analytic
midline incision extended to the left flank, and the distal functionals implicated in studies of nonlinear mechanics
aorta was cannulated at the bifurcation with a Teflon and population dynamicS.As the Volterra-Wiener theo-
tube filled with blood freshly obtained from a littermate. ries were gradually adapted to actual applications,
The catheter was connected to a steel bellows pump. Thediscrete-time representations of the functionals and
left kidney was denervated, and an electromagnetic flow finite-bandwidth approximations of the input GWN sig-
probe was placed around the left renal artery for mea- nals became practically necessary. The fundamental im-
surements of flow. The arterial pressure was measured inportance of this problem and the generality of the
the superior mesenteric artery. Volterra-Wiener approach gave rise to a host of innova-
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tive variants and implementations of this approach in :

applications to physiological system modelitigr a par- vi(m)
tial review, see Refs. 8—16 i
In discrete time, the general input-output relation of a
stable (finite-memory nonlinear time-invariant dynamic x(n) J L v2(n) YO=RVLY2V)
system is given by the discrete-time Volterra series: )
y(m=ko+ > ky(m)x(n—m) oy [P
m

+2 2 ka(my,mp)x(n—my)x(n—my)+- -+, .

m M FIGURE 1. Block-structured model for the general nonlinear
(1) Volterra system. The filter-bank outputs ~ {v;} feed into the
multi-input static nonlinearity ~ f(¢) that generates the system
output.
where x(n) is the input andy(n) is the output of the P
system. The Volterra kernelk{,k;,k,, ...) describe
the dynamics of the system from a hierarchy of system  The proposed methodology of PDM analysis rests on
nonlinearities. the fact that, among all possible choices of expansion

Expansion of the Volterra kernels on a complete basis basesorthogonal or nonorthogonalthere are some that
{b;(m)} transforms Eq(1) into the multinomial expres- require the minimum number of basis functions to
sions achieve a given mean-square approximation of the sys-

tem output. Such a minimum set of basis functions is
termed PDMs of the nonlinear system and correspond to
Y(n)ZCo+2 ci(j)vj(n) an associated multivariate nonlinear functiiqm) gener-
] ating the system output. No claim of uniqueness can be
made for these PDMs, in general. However the associ-

+2 2 Ca(iz vy, (Mo (n)+-- ated nonlinear functiori(*) is unique for a selected set
i1 2 of PDMs for a given system and vice versa.
—f(v1,0,, Dis ) ) The key practical issue is how to determine the mini-

mum number of PDMs required in a given modeling
application and how to estimate the corresponding static
where nonlinearities(of arbitrary ordey from stimulus-response
data. The methodology is detailed in Ref. 15.
The eigendecomposition method of PDM estimation
vj(n)=2> bj(m)x(n—m), ) was selected for this application because it yielded more
" consistent result§for different preparationsthan the ar-
tificial neural network method. Although the methodol-
andcy(j), ca(j1,j2), etc., represent the expansion coef- ogy has been presented before, we provide an outline in
ficients of the respective kernels. The use of the kernel the Appendix for the convenience of the reader.
expansion basis implies that a general model of the Vol-
terra class of systems can take the block-structured form RESULTS
of Fig. 1, wherein the basis functiogb;(m)} constitute
the impulse responses of a filter bafik} whose outputs We begin with PDM analysis of six normotensive
are feeding into the multi-input static nonlinearity (SDR) input—output datasets, each having 256 datapoints
f(ve, ... wj, ... ). Wiener suggested the use of La- sampled every 1 s, that were collected in two clusters of
guerre functions as an appropriate orthonormal basisthree under conditions of medium and high pressure
{bj(m)}, owing to their built-in exponential term that forcing (as measured by the standard deviation of the
makes them suitable for physical systems with asymp- applied pressure broadband perturbatiarne kernel es-
totically exponential relaxation dynamics. This sugges- timates from these dat@lthough for the broader band-
tion was adopted in pioneering applicatibAand has width of 1 H2) using the Laguerre expansion technique
been adapted to discrete time for improved kernel esti- have been reported befof®.Using the PDM analysis
mation from sampled dafd.For a selected basi®.g., methodology outlined in the Appendifor M =50) and
Laguerre functions the modeling problem reduces to employing seven Laguerre functiofwith a=0.5), we
estimating the multivariate functiof(e). obtain two PDMs that have fairly consistent
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1st PDM for Normotensive: Medium Forcing 2nd PDM for Normotensive: Medium Forcing
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FIGURE 2. The two obtained PDMs of renal autoregulation (averaged over three data records ) for the medium-forcing normo-
tensive data in the time domain  (top panels ) and in the frequency domain (bottom panels ). The first PDM (left panels )

corresponds to the myogenic mechanism with a resonance peak around 0.12 Hz, and the second PDM (right panels ) corre-
sponds to the TGF mechanism with a resonance peak around 0.025 Hz. The standard error bounds in dashed lines correspond
to = one standard deviation. The time-domain result is given by Eq. (A5).

wave forms for all experiments. Naturally, some limited different linear combinations for different values of the
variability is observed in the PDM wave forms across zero-order kernelconstantky). We conjecture that the
experiments at the same level of forcing, but the main two PDMs correspond approximately to the two auto-
dynamic characteristicé.g., frequency band of charac- regulatory mechanisms—a conjecture that, if true, af-
teristic resonant responseemain the same. Furthermore, fords for the first time a detailed and separate analysis of
these common dynamic characteristics across experi-the distinct dynamics associated with each of the two
ments for each of the two PDMs seem to correspond to autoregulatory mechanisms.

the main frequency-response characteristics of the two We make use of this fact in order to examine the
autoregulatory mechanisms; viz., resonant peaks in therelative effect of the pressure forcing level on the two
frequency bands: 0.08-0.16 Hz for the myogefficst autoregulatory mechanisms by comparing the PDMs ob-
PDM) and 0.02-0.08 Hz for the TGF mechanigsec- tained for medium and high level of forcing in normo-
ond PDM. This is illustrated in Fig. 2, where the aver- tensive rats. The first PDM remains roughly the same for
ages over three experiments of the two estimated PDMsdifferent levels of forcing, except for very low frequen-
for medium forcing are shown in the time and frequency cies (below 0.02 Hz where other extraneous factors are
domains. Additional PDMs corresponding to smaller active, but are unrelated to renal autoregulation. The
eigenvalues exhibit mixed dynamic characteristics., second PDM, however, changes significantly by exhibit-
resonant peaks at both frequency bands—myogenic anding another strong resonant peak at the high end of the
TGF). Occasionally, the second PDM exhibits this type TGF frequency band0.06—0.08 Hz This may be the

of mixed dynamic characteristics and the third PDM then second harmonic of the fundamental frequency of the
corresponds to the TGF mechanism. Additional, linearly aforementioned intrinsic oscillation of the TG#ypically
dependent PDMs may arise because of the first-elementobserved between 0.02 and 0.05)Hzaused possibly by
truncation described by EqAS5), which can lead to  a saturation nonlinearity at high forcing levels. These
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1st PDM for Normotensive: High Forcing 2nd PDM for Normotensive: High Forcing
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FIGURE 3. The two obtained PDMs (averaged over three data records ) for the high-forcing normotensive data in the time
domain (top panels ) and in the frequency domain (bottom panels ). The first PDM (left panels ) corresponds to the myogenic
mechanism and the second PDM (right panels ) corresponds to the TGF mechanism of renal autoregulation. Compared to the
medium-forcing case of Fig. 2, the first PDM has not been altered significantly but the second PDM exhibits marked changes

(two resonant peaks at about 0.02 and 0.06 Hz ). The standard error bounds in dashed lines correspond to + one standard
deviation. The time-domain result is given by Eq. (A5).

facts are illustrated by comparing Fig. 2 with Fig. 3, levels of forcing in normotensive rats. For each experi-
where the average PDM estimates for medium and high mental record, the two mode outputsi;(u,) can be
levels of forcing in normotensive rats are presented. computed and a polynomial function ofi{,u,) can be

It is important to note that the contribution to the fitted by least-squares regression to the system output.
system output of the first PDNtorresponding primarily ~ Orthogonal forward regression methods can be used to
to the myogenic mechanigns about one order of mag- assess the statistical significance of these polynomial
nitude larger than the contribution of the second PDM coefficients*?? The normalized mean-square error of the
(corresponding primarily to the TGF mechanjsim nor- third-order model prediction based on these two PDMs is
motensive rats, as indicated by the respective eigenval-about 12% for the medium-forcing data and below 5%
ues. The initial spike in the first PDM probably reflects for the high-forcing datathe latter corresponding to a
the operation of elastic components in the vascular wall case of higher signal-to-noise ratio in the data
to the response. If this initial response is removed, the  We repeat this PDM analysis for the two respective
magnitude of the eigenvalue corresponding to the first sets of hypertensive data. The average two PDMs for
PDM is still about five times that of the second. Further- medium-level forcing are shown in Fig. 4 and appear
more, the estimated nonlinearities that are associatedsimilar to their normotensive counterparts for high-level
with each PDM show that the second PDM exhibits forcing. However, the model prediction error is consid-
stronger nonlinear characteristics than the first PDM erably higher in this cas@pproximately by a factor of 4
(relative to the respective linear term$Veak interaction relative to the medium-forcing normotensive dafarob-
terms between the first PDM and the second PDM are ably due to the chaotic spontaneous TGF oscillation ob-
also evident. These facts remain unaltered for different served in hypertensive ratsThe relative contributions of
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1st PDM for Hypertensive: Medium Forcing 2nd PDM for Hypertensive: Medium Forcing
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FIGURE 4. The two obtained PDMs (averaged over three data records ) for the medium-forcing hypertensive data in the time
domain (top panels ) and in the frequency domain (bottom panels ). The first PDM (left panels ) corresponds to the myogenic
mechanism and the second PDM (right panels ) corresponds to the TGF mechanism of renal autoregulation. The first PDM is

similar to the normotensive case  (Figs. 2 and 3) and the second PDM resembles the high-forcing normotensive case (Fig. 3).
The standard error bounds in dashed lines correspond to + one standard deviation. The time-domain result is given by
Eqg. (A5).

the two PDMs to the system output and the form of their tics. The contribution to the system output of the first
respective nonlinearities for the medium-level hyperten- PDM (corresponding to the myogenic mechanism
sive data are similar to the normotensive cases. For high-several times larger than the contribution of the second
forcing conditions in hypertensive rats, however, the first PDM (corresponding to the TGF mechanisrm all
PDM becomes dominant—a fact that suggests that thecases, with the hypertensive high-forcing case exhibiting
stimulus-coherent TGF response diminishes under thesean even more dominant first PDM contribution to the
conditions—and the model prediction error is reduced by system output.

half. The average PDMs obtained for high-forcing con- Cubic nonlinearities were estimated for all cagesn-
ditions are shown in Fig. 5. sistent with previous findings of third-order nonlineari-
ties in this systemyielding models of good prediction
CONCLUSIONS accuracy, especially in the high-forcing cases owing to

the higher signal-to-noise ratio. For medium and high

The results demonstrate the efficacy of PDM analysis pressure forcing, the normotensive models exhibit greater
of renal autoregulation dynamics using broadband prediction accuracy than their hypertensive counterparts.
pressure-flow data. Two PDMs have been consistently Based on the estimated nonlinearities, the contribution of
identified in both normotensive and hypertensive rats for the second PDM is evidently more nonlinear than the
two levels of pressure forcingas measured by the stan- first PDM contribution(relative to their respective linear
dard deviation of the applied pressure perturbation contributions. Increasing the level of pressure forcing
These two PDMs correspond roughly to the two primary seems to affect primarily the second POIWGF mecha-
autoregulatory mechanismgyogenic and TGFas in- nism) in both normotensive and hypertensive rats. In the
dicated by the respective frequency-response characterishigh-forcing hypertensive case, the relative contribution
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1st PDM for Hypertensive: High Forcing

2nd PDM for Hypertensive: High Forcing
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FIGURE 5. The two obtained PDMs (averaged over three data records ) for the high-forcing normotensive data in the time
domain (top panels ) and in the frequency domain (bottom panels ). The first PDM (left panels ) corresponds to the myogenic
mechanism and the second PDM  (right panels ) corresponds to the TGF mechanism of renal autoregulation. Only changes in the
second PDM are evident relative to the medium-forcing hypertensive case (Fig. 4). The standard error bounds in dashed lines
correspond to * one standard deviation. The time-domain result is given by Eq. (A5).

of the second PDM to the system output is reduced andthe same reason, the higher resting sympathetic tone in
its resonance shifts to the high end of the TGF band hypertensive rats will not be directly reflected on the
(0.06—-0.07 Hg, while the first PDM contribution to the  kernels and PDM measurements.

system output becomes dominant over the second PDM
contribution. The two PDMs are similar in form in the
cases of high-forcing normotensive and medium-forcing
hypertensive data.

It is important to note that the reduced relative im-
portance of the second PDktorresponding to the TGF This work was supported by NIH Grants No. RR-
mechanismin hypertensive rats does not imply a dimin- 01861 (Biomedical Simulations Resource of the Univer-
ished role of the TGF mechanism overall. On the con- sity of Southern California No. HL-45623, and No.
trary, the role of TGF in hypertensive rats is enhanced DR-15968, and by a grant from the Whitaker Founda-
but manifested mostly as a spontaneous chaotic tion.
oscillation® Since this spontaneous chaotic oscillation
does not depend on the specific pressure wave form
applied as forcing input, the obtained kernels and PDMs
do not reflect this chaotic behavior. Thus, the contribu-
tion of the second PDM to the flow response in hyper-
tensive rats should be interpreted only with respect to its  The kernel values obtained up to a maximum Mg
causal relation with the applied pressure forcing stimu- (kernel memory are combined to form a real symmetric
lus, which does not include spontaneous oscillations. For (M +2)X (M +2) square matrix:
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Nonzero offset value$g;} give rise to linear terms in
terms of{u;} in the model output equation. Note that the
matrix Q is not positive definite and, therefore, negative
and positive eigenvalues are possible.

practice, the selection of the significant
eigenvalues/eigenvectors must take into account signal-
to-noise ratio(SNR) considerationgi.e., setting the se-
lection threshold higher for lower SNRand trade-offs
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[ ko k(0) k(D) Sky(M) |
3k1(0) k(0,0 ky(0,2) ko(O,M)
Q=| 3ki(1)  ka(1,0  ke(LD) ko(1M) |, n
_%kl(l\/l) ko(M,0)  ky(M,1) k(M. M) |
(A1)

between prediction accuracy and model complexity. A
simple selection crtierion is used in this study whereby

that can be used to express the second-order Volterrathe selected eigenvalues cumulatively account for at least

model responsey,(n) in a quadratic form:

y2(n)=x"(n)Qx(n), (A2)
where T denotes “transpose” and theM+ 2)-dimen-
sional vector f(n)=[1x(n)x(n—1)-~~ X(n—M)] is
composed of the stimulusM+1)-point epoch at each
time n and a constant 1 that allows incorporation of the
lower order kernel contributions in EGA2). BecauseQ

90% of the output signal power.

Clearly, when the actual system is of higher than
second order, the search for PDMs based on the qua-
dratic form of Eq.(A2) may be unduly confined. None-
theless, the final modelwhich includes the estimated
multi-input static nonlinearityis not limited to the sec-
ond order of the quadratic form employed, because the
multivariate nonlinear function of the modéleceiving
as inputs the outputs of thé selected PDM filtenscan

is a real symmetric square matrix, there exists always anbe estimated up to any degree of nonlinearity. There is

orthonormal matrixR such thatQ=RTAR, leading to
the expression

y2(n)=u'(n)Au(n), (A3)

where A is the diagonal eigenvalue matrix and

u(n)=Rx(n) (A4)

is the vector of transformed inputs by the orthonormal
eigenvector matriXR. Inspection of the real eigenvalues
in A allows selection of the significant ones on the basis
of relative magnitudda selection that calls for appropri-
ate threshold criterjaand subsequent selection of the

no guarantee that the PDMs selected from the quadratic
model will be adequate for the high-order model; their

adequacy will be assessed ultimately by the predictive
ability of the resulting model.

Analytical evaluation of the static nonlinearity re-
quires the introduction of a postulated mathematical
structure containing certain unknown parameters that are
subsequently estimated from the data via least-squares
fitting. For instance, a multinomial structure of specified
degree can be imposedonsistent with the modified
Volterra expansion of Eq2)], and its coefficients can be
estimated from the data through linear regressibe-
cause the unknown parameters enter linearly in this ex-
pression.

corresponding orthonormal eigenvectors that become the

PDMs of this system.

For each significant eigenvalue, the values of the
corresponding eigenvectorur=[ﬂiyouiyl- Mim+1]
(with the exception ofu; o) define theith PDM:

M+1

pi(m) = JEl i 6(m—j+1), (A5)

where §(+) denotes the discrete impulse functi@fro-
necker delta The obtainedith PDM generates théh
mode outputu;(n) via convolution with the stimulus
x(n). Note that a constant offset valyg= u; o must be
added to thdth mode output; to express the second-

order model predictiory, usingJ PDMs:

J
92<n)=i§1 Nl (n)+ BiT2 (A6)
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