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Abstract—This article presents results of the use of a no
methodology employing principal dynamic modes~PDM! for
modeling the nonlinear dynamics of renal autoregulation
rats. The analyzed experimental data are broadband~0–0.5 Hz!
blood pressure-flow data generated by pseudorandom for
and collected in normotensive and hypertensive rats for
levels of pressure forcing~as measured by the standard dev
tion of the pressure fluctuation!. The PDMs are computed from
first-order and second-order kernel estimates obtained from
data via the Laguerre expansion technique. The results dem
strate that two PDMs suffice for obtaining a satisfactory no
linear dynamic model of renal autoregulation under these c
ditions, for both normotensive and hypertensive ra
Furthermore, the two PDMs appear to correspond to the
main autoregulatory mechanisms: the first to the myogenic
the second to the tubuloglomerular feedback~TGF! mechanism.
This allows the study of the separate contributions of the t
mechanisms to the autoregulatory response dynamics, as
as the effects of the level of pressure forcing and hyperten
on the two distinct autoregulatory mechanisms. It is shown t
the myogenic mechanism has a larger contribution and is
fected only slightly, while the TGF mechanism is affect
considerably by increasing pressure forcing or hypertens
~the emergence of a second resonant peak and the decr
relative contribution to the response flow signal!. © 1999
Biomedical Engineering Society.@S0090-6964~99!00201-5#

Keywords—Nonlinear modeling, Volterra kernels, Laguer
expansion.

INTRODUCTION

Two primary mechanisms are thought responsible
renal autoregulation~i.e., the process by which vascula
hemodynamic impedance is adjusted to minimize fl
tuations in blood flow caused by fluctuations in blo
pressure!: the myogenic mechanism and the tubuloglo
erular feedback~TGF!.3–7 The myogenic mechanism i
vascular in nature and causes changes in the blood ve
diameter and mechanical characteristics~e.g., stiffness!
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in response to changes in local vascular pressure.
TGF mechanism is governed by flow-rate depend
concentration changes in tubular fluid~sensed at the dis
tal tubular site, the macula densa! and alters the imped
ance characteristics of the preglomerular vessels thro
still unknown signals that affect vascular smooth musc
The frequency response characteristics of the two mec
nisms have been studied in rats,3–5,7,18and the consensu
is that the myogenic mechanism is faster and is ass
ated with a resonance~decreased impedance! over the
frequency range from 0.08 to 0.16 Hz. The TGF mech
nism is active for frequencies below 0.08 Hz and
associated with a strong resonance between 0.02
0.05 Hz, where it exhibits an intrinsic, self-sustain
oscillation.6,7 The combined action of the two mecha
nisms attenuates the effect of blood pressure fluctuat
on blood flow at frequencies less than 0.08 Hz, wh
most of the naturally occurring power is found in th
blood pressure spectrum.17

Recent studies in rats have used externally impo
broadband arterial pressure fluctuations to separate
dynamical properties of the two renal autoregulato
mechanisms.3,4,16 The advantages of broadband forcin
as an excitation in linear and nonlinear system ident
cation have been well documented, and the associ
modeling techniques have gained in popularity over
last 25 years.8–11,13,14Suppression of noise and reductio
of experimentation time are among these advantag
Another major advantage is the ability of this approa
to discern quantitatively the linear and nonlinear d
namic characteristics of the system under study by me
of Volterra kernels.8,19

In previous papers, we presented nonlinear Volte
models of renal autoregulation in rats and explored
physiological interpretation of the obtained Volter
kernels.16 A third-order Volterra model was shown to b
adequate in representing the dynamic relationship
tween renal blood flow and arterial pressure in a bro
band context up to 1 Hz.4,16 The effects of increasing
power in broadband pressure forcing were examined
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24 MARMARELIS et al.
shown to cause increased damping of the system dyn
ics in a manner consistent with the presence of nonlin
compressive~sigmoid! feedback.12 The nonlinear interac-
tion between the two primary autoregulatory mechanis
~the myogenic and TGF! were examined by means of th
experimentally obtained second-order and third-or
Volterra kernels.4 Distinct differences in such nonlinea
interactions were observed between normotensive
hypertensive rats. Specifically, such interaction was m
evident for low-level forcing in normotensive rats. Th
nonlinear dynamic characteristics of each individu
mechanism changed for different levels of pressure fo
ing and between normotensive and hypertensive rats4,16

Although these studies represent significant progr
in understanding the nonlinear dynamic characteristics
renal autoregulation under broadband conditions,
subtle changes in the characteristics of the individ
mechanisms~myogenic and TGF! with varying pressure
forcing level or between normotensive and hypertens
rats require further analysis. This is pursued in this
ticle by means of the recently introduced ‘‘principal d
namic mode’’ ~PDM! analysis for nonlinear physiologi
cal systems.15 It is shown that two PDMs obtained from
the experimentally measured kernels appear to co
spond to the two autoregulatory mechanisms in terms
the respective frequency band of operation—a fact t
allows a more precise analysis of the aforemention
changes in the characteristics of the two mechanism

In the following section the experimental preparati
and data collection procedures are described briefly.
Methodology section contains an outline of the PD
approach. In the Results section the results obtained
presented, and the main conclusions are summarize
the final section.

DATA COLLECTION

Experiments were performed on three male sponta
ously hypertensive rats~SHRs! and on three age-matche
male normotensive Sprague-Dawley rats~SDRs! weigh-
ing 250–350 g. The animals had free access to food
tap water prior to the experiments. The experimen
procedure is described in detail elsewhere.3,4,16 In brief,
the rats were anesthetized with halothane administere
an oxygen-nitrogen mixture and were artificially ven
lated after the administration of a muscle relaxant~gal-
lamine triethiodide!. The abdomen was opened through
midline incision extended to the left flank, and the dis
aorta was cannulated at the bifurcation with a Tefl
tube filled with blood freshly obtained from a littermat
The catheter was connected to a steel bellows pump.
left kidney was denervated, and an electromagnetic fl
probe was placed around the left renal artery for m
surements of flow. The arterial pressure was measure
the superior mesenteric artery.
-
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Measurements of blood flow and blood pressure w
made while broadband fluctuations were induced in
arterial blood pressure by a bellows pump. The line
motor that moved the bellows was driven by a pow
amplifier controlled by a personal computer through
digital-to-analog~D/A! converter. The input to the D/A
converter was a constant-switching-pace symmetric r
dom signal~CSRS!, which exhibits the spectral proper
ties of band-limited white noise.9 Two different levels of
arterial pressure forcing~measured by the standard d
viation of the resulting pressure fluctuations! were used.
The power levels varied somewhat from experiment
experiment, but two clusters of arterial pressure lev
were roughly formed for both the SDRs and the SHR4

The renal blood flow and arterial pressure sign
were sampled over 256 s with a sampling rate of
samples/s~Nyquist frequency of 1 Hz!, after digital low-
pass filtering to avoid aliasing. For the purposes of t
study, we chose to further limit the data bandwidth to 0
Hz ~down sampling by a factor of 2 after low-pass fi
tering at 0.5 Hz! in order to focus more on the frequenc
band of interest to autoregulation. Recall that above
Hz the system exhibits ‘‘all-pass’’ characteristics with n
autoregulation dynamics in evidence. Each time se
was subjected to second-degree polynomial trend
moval. In addition, each data record containing 256 d
points was demeaned~by subtracting out the mean value!
and normalized by dividing with the standard deviati
value of each data record. Thus, regardless of differen
in the arterial pressure forcings, all analyzed data s
had zero mean and unit variance since our interes
focused on the dynamic characteristics of autoregulat
irrespective of relative scaling factors from experiment
experiment.

METHODOLOGY

The general methodology of nonlinear modeling
dynamic systems using functional expansions and k
nels has its origin in Wiener’s pivotal monograph th
suggested the use of Gaussian white noise~GWN! as the
effective test input for nonlinear system identificatio
based on a hierarchy of nonlinear functionals~the
Wiener series!.21 Volterra’s pivotal contribution was in
suggesting, much earlier, the use of functional exp
sions~the Volterra series! to represent unknown analyti
functionals implicated in studies of nonlinear mechan
and population dynamics.19 As the Volterra-Wiener theo-
ries were gradually adapted to actual applicatio
discrete-time representations of the functionals a
finite-bandwidth approximations of the input GWN sig
nals became practically necessary. The fundamental
portance of this problem and the generality of t
Volterra-Wiener approach gave rise to a host of inno
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25Principal Dynamic Mode Analysis of Renal Autoregulation
tive variants and implementations of this approach
applications to physiological system modeling~for a par-
tial review, see Refs. 8–16!.

In discrete time, the general input-output relation o
stable ~finite-memory! nonlinear time-invariant dynamic
system is given by the discrete-time Volterra series:

y~n!5k01(
m

k1~m!x~n2m!

1(
m1

(
m2

k2~m1 ,m2!x~n2m1!x~n2m2!1¯,

~1!

where x(n) is the input andy(n) is the output of the
system. The Volterra kernels (k0 ,k1 ,k2 , . . . ) describe
the dynamics of the system from a hierarchy of syst
nonlinearities.

Expansion of the Volterra kernels on a complete ba
$bj (m)% transforms Eq.~1! into the multinomial expres-
sions

y~n!5c01(
j

c1~ j !v j~n!

1(
j 1

(
j 2

c2~ j 1 , j 2!v j 1
~n!v j 2

~n!1¯

5 f ~v1 ,v2 , . . . ,v j , . . . !, ~2!

where

v j~n!5(
m

bj~m!x~n2m!, ~3!

and c1( j ), c2( j 1 , j 2), etc., represent the expansion coe
ficients of the respective kernels. The use of the ker
expansion basis implies that a general model of the V
terra class of systems can take the block-structured f
of Fig. 1, wherein the basis functions$bj (m)% constitute
the impulse responses of a filter bank$L j% whose outputs
are feeding into the multi-input static nonlineari
f (v1 , . . . ,v j , . . . ). Wiener suggested the use of L
guerre functions as an appropriate orthonormal ba
$bj (m)%, owing to their built-in exponential term tha
makes them suitable for physical systems with asym
totically exponential relaxation dynamics. This sugge
tion was adopted in pioneering applications1,20 and has
been adapted to discrete time for improved kernel e
mation from sampled data.13 For a selected basis~e.g.,
Laguerre functions!, the modeling problem reduces t
estimating the multivariate functionf (•).
The proposed methodology of PDM analysis rests
the fact that, among all possible choices of expans
bases~orthogonal or nonorthogonal!, there are some tha
require the minimum number of basis functions
achieve a given mean-square approximation of the s
tem output. Such a minimum set of basis functions
termed PDMs of the nonlinear system and correspond
an associated multivariate nonlinear functionf (•) gener-
ating the system output. No claim of uniqueness can
made for these PDMs, in general. However the ass
ated nonlinear functionf (•) is unique for a selected se
of PDMs for a given system and vice versa.

The key practical issue is how to determine the mi
mum number of PDMs required in a given modelin
application and how to estimate the corresponding st
nonlinearities~of arbitrary order! from stimulus-response
data. The methodology is detailed in Ref. 15.

The eigendecomposition method of PDM estimati
was selected for this application because it yielded m
consistent results~for different preparations! than the ar-
tificial neural network method. Although the methodo
ogy has been presented before, we provide an outlin
the Appendix for the convenience of the reader.

RESULTS

We begin with PDM analysis of six normotensiv
~SDR! input–output datasets, each having 256 datapo
sampled every 1 s, that were collected in two clusters
three under conditions of medium and high press
forcing ~as measured by the standard deviation of
applied pressure broadband perturbation!. The kernel es-
timates from these data~although for the broader band
width of 1 Hz! using the Laguerre expansion techniq
have been reported before.16 Using the PDM analysis
methodology outlined in the Appendix~for M550) and
employing seven Laguerre functions~with a50.5), we
obtain two PDMs that have fairly consisten

FIGURE 1. Block-structured model for the general nonlinear
Volterra system. The filter-bank outputs ˆv j‰ feed into the
multi-input static nonlinearity f „•… that generates the system
output.
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FIGURE 2. The two obtained PDMs of renal autoregulation „averaged over three data records … for the medium-forcing normo-
tensive data in the time domain „top panels … and in the frequency domain „bottom panels …. The first PDM „left panels …

corresponds to the myogenic mechanism with a resonance peak around 0.12 Hz, and the second PDM „right panels … corre-
sponds to the TGF mechanism with a resonance peak around 0.025 Hz. The standard error bounds in dashed lines correspond
to 6 one standard deviation. The time-domain result is given by Eq. „A5….
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wave forms for all experiments. Naturally, some limite
variability is observed in the PDM wave forms acro
experiments at the same level of forcing, but the m
dynamic characteristics~e.g., frequency band of charac
teristic resonant response! remain the same. Furthermor
these common dynamic characteristics across exp
ments for each of the two PDMs seem to correspond
the main frequency-response characteristics of the
autoregulatory mechanisms; viz., resonant peaks in
frequency bands: 0.08–0.16 Hz for the myogenic~first
PDM! and 0.02–0.08 Hz for the TGF mechanism~sec-
ond PDM!. This is illustrated in Fig. 2, where the ave
ages over three experiments of the two estimated PD
for medium forcing are shown in the time and frequen
domains. Additional PDMs corresponding to smal
eigenvalues exhibit mixed dynamic characteristics~i.e.,
resonant peaks at both frequency bands—myogenic
TGF!. Occasionally, the second PDM exhibits this ty
of mixed dynamic characteristics and the third PDM th
corresponds to the TGF mechanism. Additional, linea
dependent PDMs may arise because of the first-elem
truncation described by Eq.~A5!, which can lead to
-

d

t

different linear combinations for different values of th
zero-order kernel~constantk0). We conjecture that the
two PDMs correspond approximately to the two au
regulatory mechanisms—a conjecture that, if true,
fords for the first time a detailed and separate analysis
the distinct dynamics associated with each of the t
autoregulatory mechanisms.

We make use of this fact in order to examine t
relative effect of the pressure forcing level on the tw
autoregulatory mechanisms by comparing the PDMs
tained for medium and high level of forcing in normo
tensive rats. The first PDM remains roughly the same
different levels of forcing, except for very low frequen
cies ~below 0.02 Hz! where other extraneous factors a
active, but are unrelated to renal autoregulation. T
second PDM, however, changes significantly by exhib
ing another strong resonant peak at the high end of
TGF frequency band~0.06–0.08 Hz!. This may be the
second harmonic of the fundamental frequency of
aforementioned intrinsic oscillation of the TGF~typically
observed between 0.02 and 0.05 Hz!, caused possibly by
a saturation nonlinearity at high forcing levels. The
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FIGURE 3. The two obtained PDMs „averaged over three data records … for the high-forcing normotensive data in the time
domain „top panels … and in the frequency domain „bottom panels …. The first PDM „left panels … corresponds to the myogenic
mechanism and the second PDM „right panels … corresponds to the TGF mechanism of renal autoregulation. Compared to the
medium-forcing case of Fig. 2, the first PDM has not been altered significantly but the second PDM exhibits marked changes
„two resonant peaks at about 0.02 and 0.06 Hz …. The standard error bounds in dashed lines correspond to 6 one standard
deviation. The time-domain result is given by Eq. „A5….
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facts are illustrated by comparing Fig. 2 with Fig.
where the average PDM estimates for medium and h
levels of forcing in normotensive rats are presented.

It is important to note that the contribution to th
system output of the first PDM~corresponding primarily
to the myogenic mechanism! is about one order of mag
nitude larger than the contribution of the second PD
~corresponding primarily to the TGF mechanism! in nor-
motensive rats, as indicated by the respective eigen
ues. The initial spike in the first PDM probably reflec
the operation of elastic components in the vascular w
to the response. If this initial response is removed,
magnitude of the eigenvalue corresponding to the fi
PDM is still about five times that of the second. Furthe
more, the estimated nonlinearities that are associa
with each PDM show that the second PDM exhib
stronger nonlinear characteristics than the first PD
~relative to the respective linear terms!. Weak interaction
terms between the first PDM and the second PDM
also evident. These facts remain unaltered for differ
-

levels of forcing in normotensive rats. For each expe
mental record, the two mode outputs (u1 ,u2) can be
computed and a polynomial function of (u1 ,u2) can be
fitted by least-squares regression to the system out
Orthogonal forward regression methods can be used
assess the statistical significance of these polynom
coefficients.2,22 The normalized mean-square error of t
third-order model prediction based on these two PDMs
about 12% for the medium-forcing data and below 5
for the high-forcing data~the latter corresponding to
case of higher signal-to-noise ratio in the data!.

We repeat this PDM analysis for the two respecti
sets of hypertensive data. The average two PDMs
medium-level forcing are shown in Fig. 4 and appe
similar to their normotensive counterparts for high-lev
forcing. However, the model prediction error is consi
erably higher in this case~approximately by a factor of 4
relative to the medium-forcing normotensive data!, prob-
ably due to the chaotic spontaneous TGF oscillation
served in hypertensive rats.6 The relative contributions of
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FIGURE 4. The two obtained PDMs „averaged over three data records … for the medium-forcing hypertensive data in the time
domain „top panels … and in the frequency domain „bottom panels …. The first PDM „left panels … corresponds to the myogenic
mechanism and the second PDM „right panels … corresponds to the TGF mechanism of renal autoregulation. The first PDM is
similar to the normotensive case „Figs. 2 and 3 … and the second PDM resembles the high-forcing normotensive case „Fig. 3 ….
The standard error bounds in dashed lines correspond to 6 one standard deviation. The time-domain result is given by
Eq. „A5….
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the two PDMs to the system output and the form of th
respective nonlinearities for the medium-level hyperte
sive data are similar to the normotensive cases. For h
forcing conditions in hypertensive rats, however, the fi
PDM becomes dominant—a fact that suggests that
stimulus-coherent TGF response diminishes under th
conditions—and the model prediction error is reduced
half. The average PDMs obtained for high-forcing co
ditions are shown in Fig. 5.

CONCLUSIONS

The results demonstrate the efficacy of PDM analy
of renal autoregulation dynamics using broadba
pressure-flow data. Two PDMs have been consiste
identified in both normotensive and hypertensive rats
two levels of pressure forcing~as measured by the stan
dard deviation of the applied pressure perturbatio!.
These two PDMs correspond roughly to the two prima
autoregulatory mechanisms~myogenic and TGF! as in-
dicated by the respective frequency-response charact
-

e

-

tics. The contribution to the system output of the fir
PDM ~corresponding to the myogenic mechanism! is
several times larger than the contribution of the seco
PDM ~corresponding to the TGF mechanism! in all
cases, with the hypertensive high-forcing case exhibit
an even more dominant first PDM contribution to th
system output.

Cubic nonlinearities were estimated for all cases~con-
sistent with previous findings of third-order nonlinea
ties in this system! yielding models of good prediction
accuracy, especially in the high-forcing cases owing
the higher signal-to-noise ratio. For medium and hi
pressure forcing, the normotensive models exhibit grea
prediction accuracy than their hypertensive counterpa
Based on the estimated nonlinearities, the contribution
the second PDM is evidently more nonlinear than t
first PDM contribution~relative to their respective linea
contributions!. Increasing the level of pressure forcin
seems to affect primarily the second PDM~TGF mecha-
nism! in both normotensive and hypertensive rats. In t
high-forcing hypertensive case, the relative contributi
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FIGURE 5. The two obtained PDMs „averaged over three data records … for the high-forcing normotensive data in the time
domain „top panels … and in the frequency domain „bottom panels …. The first PDM „left panels … corresponds to the myogenic
mechanism and the second PDM „right panels … corresponds to the TGF mechanism of renal autoregulation. Only changes in the
second PDM are evident relative to the medium-forcing hypertensive case „Fig. 4 …. The standard error bounds in dashed lines
correspond to 6 one standard deviation. The time-domain result is given by Eq. „A5….
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of the second PDM to the system output is reduced
its resonance shifts to the high end of the TGF ba
~0.06–0.07 Hz!, while the first PDM contribution to the
system output becomes dominant over the second P
contribution. The two PDMs are similar in form in th
cases of high-forcing normotensive and medium-forc
hypertensive data.

It is important to note that the reduced relative im
portance of the second PDM~corresponding to the TGF
mechanism! in hypertensive rats does not imply a dimi
ished role of the TGF mechanism overall. On the co
trary, the role of TGF in hypertensive rats is enhanc
but manifested mostly as a spontaneous cha
oscillation.6 Since this spontaneous chaotic oscillati
does not depend on the specific pressure wave f
applied as forcing input, the obtained kernels and PD
do not reflect this chaotic behavior. Thus, the contrib
tion of the second PDM to the flow response in hyp
tensive rats should be interpreted only with respect to
causal relation with the applied pressure forcing stim
lus, which does not include spontaneous oscillations.
the same reason, the higher resting sympathetic ton
hypertensive rats will not be directly reflected on t
kernels and PDM measurements.
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APPENDIX

The kernel values obtained up to a maximum lagM
~kernel memory! are combined to form a real symmetr
(M12)3(M12) square matrix:
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Q53
k0

1
2 k1~0! 1

2 k1~1! ¯

1
2 k1~M !

1
2 k1~0! k2~0,0! k2~0,1! ¯ k2~0,M !

1
2 k1~1! k2~1,0! k2~1,1! ¯ k2~1,M !

A A A � A
1
2 k1~M ! k2~M ,0! k2~M ,1! ¯ k2~M ,M !

4 ,

~A1!

that can be used to express the second-order Volt
model response,y2(n) in a quadratic form:

y2~n!5xT~n!Qx~n!, ~A2!

where T denotes ‘‘transpose’’ and the (M12)-dimen-
sional vector xT(n)5@1x(n)x(n21)¯ x(n2M )] is
composed of the stimulus (M11)-point epoch at each
time n and a constant 1 that allows incorporation of t
lower order kernel contributions in Eq.~A2!. BecauseQ
is a real symmetric square matrix, there exists always
orthonormal matrixR such thatQ5RTLR, leading to
the expression

y2~n!5uT~n!Lu~n!, ~A3!

whereL is the diagonal eigenvalue matrix and

u~n!5Rx~n! ~A4!

is the vector of transformed inputs by the orthonorm
eigenvector matrixR. Inspection of the real eigenvalue
in L allows selection of the significant ones on the ba
of relative magnitude~a selection that calls for appropr
ate threshold criteria! and subsequent selection of th
corresponding orthonormal eigenvectors that become
PDMs of this system.

For each significant eigenvaluel i , the values of the
corresponding eigenvectorm i

T5@m i ,0 m i ,1¯ m i ,M11#
~with the exception ofm i ,0) define theith PDM:

pi~m!5 (
j 51

M11

m i , jd~m2 j 11!, ~A5!

where d(•) denotes the discrete impulse function~Kro-
necker delta!. The obtainedith PDM generates theith
mode outputui(n) via convolution with the stimulus
x(n). Note that a constant offset valueb i5m i ,0 must be
added to theith mode outputui to express the second
order model predictionŷ2 using J PDMs:

ŷ2~n!5(
i 51

J

l i@ui~n!1b i #
2. ~A6!
a

Nonzero offset values$b i% give rise to linear terms in
terms of$ui% in the model output equation. Note that th
matrix Q is not positive definite and, therefore, negati
and positive eigenvalues are possible.

In practice, the selection of the significan
eigenvalues/eigenvectors must take into account sig
to-noise ratio~SNR! considerations~i.e., setting the se-
lection threshold higher for lower SNR! and trade-offs
between prediction accuracy and model complexity.
simple selection crtierion is used in this study where
the selected eigenvalues cumulatively account for at le
90% of the output signal power.

Clearly, when the actual system is of higher th
second order, the search for PDMs based on the q
dratic form of Eq.~A2! may be unduly confined. None
theless, the final model~which includes the estimate
multi-input static nonlinearity! is not limited to the sec-
ond order of the quadratic form employed, because
multivariate nonlinear function of the model~receiving
as inputs the outputs of theJ selected PDM filters! can
be estimated up to any degree of nonlinearity. There
no guarantee that the PDMs selected from the quadr
model will be adequate for the high-order model; th
adequacy will be assessed ultimately by the predict
ability of the resulting model.

Analytical evaluation of the static nonlinearity re
quires the introduction of a postulated mathemati
structure containing certain unknown parameters that
subsequently estimated from the data via least-squ
fitting. For instance, a multinomial structure of specifi
degree can be imposed@consistent with the modified
Volterra expansion of Eq.~2!#, and its coefficients can be
estimated from the data through linear regression~be-
cause the unknown parameters enter linearly in this
pression!.
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