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Abstract Parametric and non-parametric modeling meth-
ods are combined to study the short-term plasticity (STP) of
synapses in the central nervous system (CNS). The
nonlinear dynamics of STP are modeled by means: (1)
previously proposed parametric models based on mecha-
nistic hypotheses and/or specific dynamical processes, and
(2) non-parametric models (in the form of Volterra kernels)
that transforms the presynaptic signals into postsynaptic
signals. In order to synergistically use the two approaches,
we estimate the Volterra kernels of the parametric models
of STP for four types of synapses using synthetic broad-
band input—output data. Results show that the non-
parametric models accurately and efficiently replicate the
input—output transformations of the parametric models.
Volterra kernels provide a general and quantitative repre-
sentation of the STP.

Keywords Facilitation - Depression - Nonlinear modeling -
Poisson random train - Volterra kernels

Action Editor: David Golomb

D. Song (B<) * V. Z. Marmarelis - T. W. Berger
Department of Biomedical Engineering,
University of Southern California,

403 Hedco Neuroscience Building,

Los Angeles, CA 90089, USA

e-mail: dsong@usc.edu

T. W. Berger
Program in Neuroscience, University of Southern California,
Los Angeles, USA

D. Song - V. Z. Marmarelis - T. W. Berger
Center for Neural Engineering, University of Southern California,
Los Angeles, USA

1 Introduction

Short-term synaptic plasticity (STP) is the use-dependent
alteration in the strength of synaptic transmission over a
time scale of milliseconds to seconds, whereby the
magnitudes of postsynaptic responses are dynamically
affected by the pattern of recent input impulses (Zucker
and Regehr 2002). This is illustrated in Fig. 1, where a train
of presynaptic action potentials (inputs) is shown to elicit
postsynaptic responses (outputs) with varying amplitudes
depending on the temporal pattern of previous presynaptic
activity. This phenomenon may also be viewed as a
dynamic nonlinearity (Sclabassi et al. 1988; Berger et al.
1994). STP is considered a critical component of synaptic
transmission and information processing in the brain
(Orban et al. 1985; Reid et al. 1991; Abbott et al. 1997,
Lisman 1997; Zador and Dobrunz 1997).

The study on STP dates back to the 1940s (Eccles et al.
1941; Feng 1941). Many underlying mechanisms of STP
have been inferred from numerous studies involving
various experimental techniques and preparations (Katz
and Miledi 1968; Creager et al. 1980; Debanne et al. 1996;
Dobrunz and Stevens 1997; Dittman and Regehr 1998;
Hanse and Gustafsson 2001). These mechanisms are
generally classified into two major categories: facilitation
(when the presence of previous presynaptic events causes
increased postsynaptic response at present) and depression
(when the opposite effect occurs). The most widely
accepted biological mechanisms for such STP effects are
the residual calcium hypothesis of facilitation and the
depletion model of depression (Liley and North 1953; Katz
and Miledi 1968; Betz 1970). According to these hypoth-
eses, facilitation is caused by the accumulation of residual
calcium in the presynaptic bouton, while depression is due
to the depletion of the neurotransmitter vesicle pool.
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Fig. 1 Illustration of the input—output data representation for the
synapse model

L

—»ki

Additionally, the recovery of the depleted vesicle pool has
been shown to be dependent on the residual calcium con-
centration (Dittman and Regehr 1998; Wang and Kaczmarek
1998; Hosoi et al. 2007). Depletion-independent mechanisms
of depression were also reported (Hsu et al. 1996; Dobrunz
et al. 1997; Kraushaar and Jonas 2000; Waldeck et al. 2000;
Gover et al. 2002; Kirischuk et al. 2002; Pedroarena and
Schwarz 2003; Fuhrmann et al. 2004). Furthermore, post-
synaptic mechanisms (e.g., the desensitization of AMPA
receptors) are potential contributors to synaptic depression
(Trussell and Fischbach 1989; Trussell et al. 1993; Jones and
Westbrook 1996).

Many STP models have been developed with distinct
scientific aims (Mallart and Martin 1967; Friesen 1975;
Magleby and Zengel 1975; Krausz and Friesen 1977;
Zengel and Magleby 1982; Yamada and Zucker 1992; Sen
et al. 1997; Tsodyks and Markram 1997; Varela et al. 1997,
Tsodyks et al. 1998; Hunter and Milton 2001). In one
approach, the model is built to explain the physiological
mechanisms underlying synaptic transmission. One excel-
lent example of such model was proposed by Dittman et al.
(2000). In their model, the STP dynamics is described by
the interplay between facilitation, depression and residual
calcium at the presynaptic terminal. This type of model can
be termed “parametric model” due to the fact that it is
expressed with very specific model structures/functions
inspired by physiological mechanisms, and a number of
adjustable parameters that can be related to certain biological
processes. It has a predictive power in uncovering the nature
of the underlying physiological processes/mechanisms. For
example, by altering the values of its key model parameters,
e.g., initial release probability of synapse, one can replicate
several distinct forms of STP dynamical characteristics in a
physiologically interpretable manner. In terms of reproducing
the STP dynamics, such models are often qualitative due to
the aim it is developed for.

The other class of STP models were developed to
quantitatively identify/replicate the nonlinear dynamical
input—output characteristics of STP (Krausz and Friesen
1977; Zengel and Magleby 1982; Sen et al. 1997; Varela et
al. 1997). This can be done in a parametrical fashion: the
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model structure can be determined based on the principle
physiological mechanisms, e.g., facilitation and depletion
for STP. The values of the unknown parameters can then be
estimated from experimental data so that the resulted model
replicated the nonlinear dynamical input—output transfor-
mation with minimum error. However, for this specific
modeling aim, the parametric modeling approach has the
inherent limitations associated with their fixed model
structure that is determined a priori based on the partial
knowledge and assumptions to the modeled system, and
thus is subject to potential biases. For example, there almost
certainly exist unknown mechanisms/processes that are not
described by the parametric model. A secondary source of
errors may be the accuracy of the required parameter
estimation under realistic input characteristics if the
parameter estimation is performed on the basis of input—
output data obtained with highly specific experimental
protocols that contains built-in biases. The latter provide
only limited information about the functional characteristics
of the system and may bias the estimated parameter values.

An alternative approach is the use of “non-parametric”
models that are obtained directly from input—output data
collected under broader experimental conditions (e.g.
random stimuli that probe the system function with a
broader repertoire of inputs) within the framework of a
general model form (the functional Volterra series). In the
non-parametric modeling approach, no specific assump-
tions are made a priori about the model structure, since the
model takes a general form that is applicable to almost
all causal systems (Krausz and Friesen 1977; Marmarelis
and Marmarelis 1978; Bishop 1995; Marmarelis 2004).
Instead of searching for the proper parameter values within
a postulated model structure, the non-parametric approach
searches for the optimal functions (Volterra kernels) con-
tained within the general model that represents the input—
output relationship of the system. The nonlinear dynamics
underlying synaptic STP can be represented quantitatively
by the kernels of the Volterra model that has predictive
capability for broadband data. The key point is that the
non-parametric model utilizes a general model form
(Volterra kernels), thus avoids potential errors in the
postulation of the model structure—as required in the
parametric modeling approach. The unknown quantities
in the non-parametric Volterra model are the kernels that
are estimated from input—output data collected under
broadband conditions (e.g. random inputs). Thus, the
non-parametric model, being inductive on the basis of
broadband data, has the potential to captures the
complete input—output nonlinear dynamical characteristics
of STP, as determined by all relevant biological
processes and underlying mechanisms active under the
broadband conditions (Marmarelis and Marmarelis 1978;
Berger et al. 1988a; Marmarelis 2004).
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As stated above, since parametric and non-parametric
models are developed for distinct aims and lay emphasis on
different aspects of the modeled system, they are comple-
mentary in nature. The main aim of these two papers is to
combine both parametric and non-parametric modeling
methods in a synergistic manner to study the STP. In this
paper (part I), we introduce a recently developed variant of
Volterra modeling that employs Laguerre expansions and
allows efficient high-order model representation and accu-
rate kernel estimation with short input—output datasets
(Marmarelis 1993). This method was applied to overcome
the major difficulty of the non-parametric model—its
representational complexity caused by the possible high-
order kernels required for completeness. We estimated non-
parametric models of four different types of central
synapses using synthetic broadband input—output data
simulated with published parametric models of STP (Varela
et al. 1997; Dittman et al. 2000). Results show that the non-
parametric models accurately capture the input—output
relations defined by the respective parametric models of
STP for a broad repertoire of input patterns similar to those
encountered under physiological conditions. The effects of
specific parameters of the parametric models on the system
input—output transformation are reflected directly on spe-
cific features of the estimated kernels.

More importantly, since the non-parametric (Volterra)
model constitutes a canonical and complete representation
of the system (nonlinear) dynamics and it is not restricted
by any prior assumptions, it forms a model-free, nearly
direct representation of the input—output data themselves.
The non-parametric model estimated from experimental
data can be used as the “ground truth” to evaluate
parametric models of the system in terms of their input—
output transformational properties. Furthermore, the non-
parametric model may suggest specific modifications in the
structure of the respective parametric model. This combined
utility of parametric and non-parametric modeling methods
is presented in the companion paper (part II).

2 Materials and methods

The input—output data used in this study result from the simu-
lation of the parametric models described below. The data are
analyzed according to the Volterra modeling methodology and
its recent refinements (i.e. Laguerre expansions of the Volterra
kernels) that are also described below.

2.1 Representation of the input—output data
In actual experiments, the input signals at the synapses are

trains of action potentials propagating along the axon and
delivered at the presynaptic sites of the axon terminals.

Since all action potentials have very short duration (1-2ms)
and almost identical shapes, they are simplified for
purposes of processing and analysis as sequences of
discrete impulses (Kronecker delta functions) with inter-
impulse intervals encoding the input information. The
output signals are the quantities of neurotransmitter
released from the vesicles of the presynaptic bouton in
response to each action potential arriving at the presynaptic
site of the axon terminal. Experimentally, the strengths of
neurotransmitter release events are quantified as amplitudes
of the excitatory postsynaptic currents (EPSCs). The EPSC
trains are simplified as sequences of discrete impulses with
varying amplitudes through deconvolution with an EPSC
template (see companion paper for more details). The
latencies of the EPSCs are short and approximately
constant (typically a fraction of 1ms) and thus can be
ignored. The EPSCs are recorded under voltage-clamp
conditions and after pharmacological manipulations so that
the contribution of postsynaptic processes which may
introduce nonlinearities (e.g., NMDA current and nonlinear
dendritic integration) are diminished. However, strong
nonlinearities due to the processes of presynaptic facilita-
tion and depression are maintained, as evidenced by the
presented results (see next section) of nonlinear modeling
of the input—output data. The computational form of
sequences of discrete impulses for the input (fixed
amplitude) and output (variable amplitude) is used for the
generation of the simulation data. An illustration of the
input—output data representation is shown in Fig. 1.

2.2 Parametric models of the four central synapses

The parametric models of four types of CNS synapses
having different characteristics of STP are included in this
study: (1) the hippocampal CA3-to-CA1 Schaffer collateral
synapse (SC); (2) the cerebellar granule cell parallel fiber-
to-Purkinje cell synapse (PF); (3) the inferior olive climbing
fiber-to-Purkinje cell synapse (CF); and (4) the excitatory
synapse in layer 2/3 of the visual cortex (VC).

The EPSC amplitudes for the first three synapses are
calculated through simulation of the D model based on the
residual calcium hypothesis (Dittman et al. 2000) under
conditions of random stimulation (Poisson random impulse
trains) using the following equations with different sets
of model parameters for each synapse. The EPSCs of the
VC synapse are simulated using the #D;D, model (Varela
et al. 1997).

The output EPSC of the D model is described by the
following equation:

EPSC(¢) = a X Nt x F(t) x D(¢). (1)

where « is the average mEPSC size, Nt is the total number
of release sites, F(#) is the dynamical facilitation factor and
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D(?) is the dynamical depression factor. The product FD is
equal to the release probability of the synapses. The
dynamical facilitation and depression factors are described
by the equations:

1 -F

F(l‘):Fl—‘rm, (2)
%—? = (1 =D(t)) X kecov(CaXp) — D(ty) x F(to)

x 8(t — to), (3)
krecov (CaXD) - kmax _ k() + kO; (4)

1+ Kp/CaXp(t)

where F is the initial probability of release, CaXg and
CaXp are two putative calcium-bound molecules responsi-
ble for facilitation and depression, respectively, Kr is the
affinity of CaXy for the respective release site, Kp is the
affinity of CaXp for the respective release site, and kiecoy 18
the residual calcium-dependent recovery of depletion that is
bounded by the baseline rate of recovery from refractory
state ko and the maximum rate of recovery from refractory
state kmax. EqQ. (2) defines an instantaneous, nonlinear
sigmoidal relation between CaXg and F that bounds F
between F; and 1. Eq. (3) describes the dynamic changes of
the depression factor caused by depletion of the release
sites. When a release happens at #,, the depression factor D
decreases by the amount of release D(#y)F(¢y) since these
release sites fall into the refractory period. The rate of
recovery kecov 1S determined by the dynamical concentra-
tion of CaXp, according to Eq. (4) that models the residual
calcium-dependent recovery of depletion and mathemati-
cally bounds k; ey between ko and &pax.

The dynamical concentrations of CaXy and CaXp are de-
scribed by the following two first-order differential equations:

0 CaXF

o = —CaXe(t) /e + Ar x 8(t — to), (5)
8%&3 = —CaXp(t)/mp+Ap X 8(t — to). (6)

In Egs. (5) and (6), the concentrations CaXy and CaXp
are modeled as two linear processes that decay exponen-
tially with time constants 7+ and 7p, after an impulsive
change Ar and/or Ap of the facilitation and/or depression
factor, respectively—triggered by an action potential
arriving at the presynaptic site at time 7.

Since the modeled STP nonlinear dynamics depend only
on dimensionless parameters, without loss of generality, the
two scalars, o and Np, in Eq. (1) and the impulsive changes
Ar and Ap are set equal to 1. Note that in Table 1, the
equivalent parameter for maximum paired-pulse facilitation
ratio p is listed instead of Ky (Dittman et al. 2000). Their
relation is given by:

1 —-F, _
(Fi/(1=Fy)) x p=F

where p explicitly models the paired-pulse facilitation ratio
for the minimum inter-impulse interval and is the key
parameter of facilitation.

In the case of the fourth synapse, the excitatory synapse
in layer 2/3 of the visual cortex (VC), the EPSCs are
calculated through simulation of the FD;D, model under
conditions of random stimulation (Poisson random impulse
trains) using the following equations (Varela et al. 1997):

KF/AF = 17 (7)

A:z‘loXFVXD]XDz7 (8)

Table 1 Parameter values used for the simulation of the models of the four types of synapses

SC PF CF vC
Parametric model FD-residual calcium model FD,D, model
P 2.2 3.1 - Ay 1
Fy 0.24 0.05 0.35 TE 94 ms
T 100 ms 100 ms - ™1 380 ms
™ 50 ms 50 ms 50 ms D2 9200 ms
ko 25! 257! 075" f 0.917
Komax 3057 3057 2057 d, 0.416
Kp 2 2 2 dy 0.975
Non-parametric model PV kernel models
L 4 4 4 10
M 2000 ms 2000 ms 2000 ms 20 s
« 0.984 0.984 0.990 0.998
N 400 400 400 2000
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F—F+f, 9)

D — D xd, (10)
OF

TFE—I—F, (11)
oD

TDE—I—D. (12)

The EPSC amplitude is modeled in Eq. (8) as the
product of the initial EPSC amplitude 4, with the
facilitation factor F" and the two depression factors D; and
D,. After each stimulating action potential, F is increased
by a constant f [see Eq. (9)] while D is multiplied by a
constant factor d [see Eq. (10)]. Between successive stimuli
(i.e. arriving action potentials), /' and D recover exponen-
tially with time constants 7 and mp, respectively [see Egs.
(11) and (12)]. Dy and D, have different recovery rates.
Note that, in contrast to the previous FD-residual calcium
model, 4y does not represent the release probability and is
set equal to 1 in the simulations for simplicity.

2.3 Estimation of the non-parametric models
of the four synapses

The estimation of the equivalent non-parametric (Volterra)
models requires a broadband input, such as a random point-
process input like a Poisson random impulse train (RIT), to
probe fully the dynamics and the nonlinearities of the
parametric models of the four synapses. The inter-pulse
interval (IPI) of a Poisson RIT is a random variable with an
exponential distribution whose mean value equals the
inverse of the exponent. The first set of simulations used
RIT inputs with data-record length of 400 input/output
event pairs and a mean firing rate (MFR) of 2Hz (i.e., the
IPI mean value is 500ms) covering an IPI range from 2 to
5,000ms, which is consistent with the physiological firing
characteristics of many types of central neurons (Berger et
al. 1988a; Barnes et al. 1990). This length of input/output
data is adequate to obtain accurate kernel estimates of the
respective non-parametric (Volterra) models following the
methodology presented below. Note that it is necessary to
increase the input—output data-record length to 2,000 event
pairs in the case of the VC synapse. In a second set of
simulations, Poisson RIT inputs of the same length as
before and with various MFRs (from 0.5 to 100Hz) are
used to simulate the four synaptic parametric models. The
resulting input—output data are used to estimate the kernels
of the respective non-parametric models in order to
examine their ability to emulate the functional properties
of the parametric models at these higher firing rates.

2.4 Volterra modeling and kernel estimation using Laguerre
expansions

According to the theory of Volterra modeling, as adapted to
the case of point-process inputs and contemporaneous
varying-amplitude outputs (Volterra 1959; Marmarelis and
Marmarelis 1978; Marmarelis 2004), the value of the output
(¢) of a nonlinear time-invariant system with finite memory
M, can be represented at the time #; by the following
Poisson—Volterra (PV) model:

() =k + Z k(ti—t)

ti—M<t;<t;

+ DY k(—t,t6—1,)

=M<t <t
i—M<, <t

+ Zsz4([i_lfflvt[_ZfZ’t[_Zf3)+'”
=M<, <i

=M<, <t
=M<t <t

(13)

where ky, k>, k5 and k4 are the first, second, third and fourth
order PV kernels of the system. The summations in Eq. (13)
take place over all time of input events within a past epoch
M (termed the “system memory”) prior to #. These
summations are constructed in a hierarchy of rising
combinations of multiple preceding events. The first-order
PV kernel, k;, represents the amplitude of the EPSC
attributed to a single input impulse (i.e., in the absence of
any preceding input impulses within the memory extent M).
The second-order PV kernel, k,, represents the change in
the EPSC amplitude caused by second-order interactions
between the present input impulse and each of the past
input impulses within the memory extent M. The third-
order PV kernel, k3, represents the change in the EPSC
amplitude caused by third-order interactions between the
present input impulse and any two (not necessarily
different) preceding input impulses within M. The fourth-
order PV kernel, k4, represents the change caused by fourth-
order interactions between the present input impulse and
any three (not necessarily different) preceding input
impulses within M and so on for higher-order kernels.

The form of these summations in Eq. (13) results from
the reduced Volterra model (Marmarelis 2004), where one
dimension of each kernel is collapsed because the input and
output events are contemporaneous (they fall in the same
event bin or have a constant delay), and the input single x(¢)
is the following point-process (Poisson random sequence of
action potentials):

x(t) = 8(t—1n), (14)
i=1

where §(t — t;) denotes the discrete impulse (Kronecker
delta) at the time ¢, N is the total number of input—output
events.
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In order to facilitate the estimation of the PV kernels
from broadband input—output data, we use the Laguerre
expansion technique (Watanabe and Stark 1975; Marmarelis
1993; Song et al. 2007) which yields better estimates
than the conventional kernel estimation technique of cross-
correlation (Lee and Schetzen 1965; Sclabassi et al. 1988)
and allows reliable kernel estimation from short and noisy
datasets. This improved performance results from the
utilization of the orthonormal basis of discrete-time Laguerre
functions to expand the kernels and reduce the number of
unknown parameters to be estimated.

According to this methodology, the ith-order PV kernel
k; is expanded in terms of L discrete-time Laguerre basis
functions by(7) as:

k,'(T],...

771'—1)

:Z Zc,(]l,...,], 1) jl(Tl) by

h=l jia=l1

(Ti- 1) (15)

(172 =) P 0 () (4 )am - 0sr<)

by() = i

Yalrnr( - )I/Zé (1)"(2) <£>o/k(l —a)f (<7< M).

where ¢; are the kernel expansion coefficients. The PV
model of Eq. (13) can be rewritten as:

Nvi(t) +chz(/17jz v, (¢

Ji=1j=

)i, (1)

H
\Mm

L

L L
+ZZZC4(/17]27]3 VJ] )vjz( )vj3(ti>+""
N1=1j=

1= 1j3=1

Z b](t_tl)a

—M<t;<t

(18)

The Laguerre parameter o (0 < v < 1) determines the
rate of exponential asymptotic decline of the Laguerre basis
functions and in practice is selected through successive
trials so that the prediction mean-square error is minimized.
The utilization of basis functions for kernel expansion
improves the kernel estimation because it reduces the
number of free parameters to be estimated from the data
(since the number L of basis functions is typically much
smaller than the number M of samples within the system
memory, i.e., the length of each kernel dimension.

The unknown kernel expansion coefficients ¢; are
estimated through least-squares fitting of the input—output
data in Eq. (15) using singular value decomposition to
avoid numerical instabilities. A Ims bin size is used to
generate the discrete Laguerre basis functions. The obtained
estimates of the expansion coefficients can be used to
construct the PV kernel estimates according to the Eq. (15).

The prediction accuracy of the obtained PV models was
evaluated with the computed out-of-sample normalized root
mean-square error (NRMSE) of the output prediction:

= (19)
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where y is the output predicted by the estimated PV model for
a novel RIT input different from the one used for kernel
estimation, y is the output of the respective parametric synapse
model for the novel RIT input. The use of different RIT inputs
for kernel estimation and prediction evaluation is necessary to
avoid overfitting the PV kernels/model to the data.

The number of basis function (L) and the Laguerre
parameter « are optimized using the criterion of out-of-
sample NRMSE. For a given model order, optimal « is
searched in the range of (0, 1) for increasing L. The com-
bination of o and L that gives the smallest out-of-sample
NRMSE is chosen to construct the PV kernels.

2.5 PV kernels and response descriptors

Each of the aforementioned PV kernels quantifies interac-
tions of a specific number of preceding input impulses that is
determined by its order. However, a certain number of
preceding input impulses (within the epoch of system
memory) make contributions to the output through all the
PV kernels of the system. For instance, a single preceding
impulse makes a contribution through the second-order PV
kernel (k) but also through all other higher-order PV kernels
present in a specific system. In other words, £, is not the
same paired-pulse facilitation/depression function measured
through the popular paired-pulse stimulation protocol.
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To examine the effects of a given number of preceding
input impulses within the epoch of system memory, we
introduce the notion/measure of “response descriptors”
(RD). The ith-order RD, r;, exclusively represents the ith-
order modulatory effect of any i-1 different preceding input
impulses on the present output. There exist simple
mathematical relations between the PV kernels and the
ith-order RD. For instance, in the case of a third-order PV
model (Fig. 2):
ry = k1 (20)

(1) = ka(t) + ks (7, 7) (21)

r3(11,72) = 2ks (11.72) (22)

Note that, for a triplet of input impulses, the output is
given by:
(71, 72) =11+ ra(71) + r2(e2) +13(71, 72) (23)

Fig. 2 The Poisson-Volterra

where y(7, 7) is the output predicted by the third-order
PV model for the two preceding input impulses with time
lags from the present output 7; and 7, respectively (see
Fig. 2E). This mathematical formalism can be extended to
any order of PV model. Equations (20)—(23) show that the
set of PV kernels and the set of RDs are equivalent in
terms of output prediction. The RDs will be used for
illustration of the results in this paper and for their com-
parative evaluation vis-a-vis previously reported results on
synaptic STP, because they more closely relate to the
established notion of paired-pulse facilitation/depression.
An illustrative example of PV kernels and RDs for a third-
order PV model obtained from the simulated data of
the parametric D model of the SC synapse is shown in
Fig. 2. Similarly, the RDs of a fourth-order PV kernel

model can be expressed as (Fig. 7):
ry = k1 (24)

(1) = k(1) + ks (7, 7) + ka(7,7,7) (25)

(PV) kernels and corresponding
response descriptors (RDs) of the
third-order PV model of the SC
synapse. (A) The second-order
PV kernel k, representing the
second-order interactions with a
preceding impulse (exhibiting
facilitation in this case), where
the abscissa axis is the inter-pulse
interval (IPI) values of the pre-
ceding impulse. (B) The third-
order PV kernel k; representing
the third-order interactions with
two preceding impulses (exhibit-
ing depression in this case),
where the two abscissa axes are
the IPI values of the two preced-
ing impulses. (C) The second-
order RD r, that is equal to the
paired-pulse response function.
(D) The third-order RD r; that
can be viewed as the triple-pulse
response function. The separation
of paired-pulse facilitation and
depression characteristics is evi-
dent in (C) and (D), respectively.
(E) The response to a three-pulse
stimulus with IPIs 7, and 7» is the
summation of 7y, (1), r2(72)
and }’3(7'1, ’7'2)
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ko
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r3(71,72) = 2k3(71, 72) + 3ka(71, 71, 72)
+3k4(’£’2,‘[2,1’1) (26)

r4(71, 72, 73) = 6ky(71, 72, 73) (27)

and it can be proven that,

V(7T1,72,73) = 1+ (1) + 12(72) + 12(73)
+73(71,72) +13(71,73) +73(72,73)
+r4(71,72,73) (28)

The RDs may also be directly estimated from the input—
output data with separate consideration of each output with
respect to the number of impulses within its memory.
However, the current method is computationally more
convenient since the estimation of PV kernels only involves
combinations of v instead of the combinations of impulses
in the system memory (M).

3 Results

The parametric models of the aforementioned four syn-
apses (SC, PF, CF and VC) are simulated for the param-
eter values shown in Table 1 and Poisson RIT inputs with
MEFR of 2Hz. Using the resulting synthetic input—output
data, we estimate the PV kernels of the corresponding
non-parametric models employing the methodology de-
scribed in the previous section.

A Volterra kernel model is expressed as a functional
power series of input with progressively higher-order
kernels capable of describing higher-order nonlinear dy-
namics. Theoretically, it can replicate arbitrary system
nonlinearity. However, the number of coefficients to be
estimated grows exponentially with increases in model
order, and thus makes it impractical to keep all the high
order terms. So in practice, the first issue in kernel
estimation is to find out how many terms (orders) are
needed for accurate replication of the system nonlinearity
and then to truncate the unnecessary high order terms. This
is typically done using statistical model order selection
criteria (MOSC) (Marmarelis 2004). However, existing
noise-based statistical MOSCs are not applicable to the
problem in this study since the modeled systems (paramet-
ric models) are noise-free. The residual errors are purely
due to the difference between the kernel model and the
parametric model, and their statistical significance thus can
not be evaluated using statistical criteria. Therefore, we
choose to use a simple and straightforward model order
selection approach in this study: if the residual error
(NRMSE) is below a certain level (5%) for a given model
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order, the model is considered a “practically complete” (as
opposed to “mathematically complete””) model since the
majority of the system nonlinearity is accounted for.

We estimate first, second, third and fourth order PV
models of the four synapses. The out-of-sample NRMSEs
of model predictions are given in Table 2. The first-order
kernel model is a scalar, which is equal to the mean of
output amplitudes. No nonlinear dynamic is included and
its model predictions are constant. However, the NRMSEs
of first-order kernel models show that all four synapses
have strong output nonlinearities given the unitary input
amplitudes. The second, third and fourth-order kernel
models are capable of modeling up to second, third and
fourth-order nonlinear systems, respectively. In PF, CF and
VC synapses, most of the NRMSEs are diminished (<5%)
when the model order is increased to two; in SC synapse,
there is still a large portion of residual error in the second
order kernel model. The model order should be increased to
three to obtain a NRMSE below 5%. These results show
that for Poisson random inputs with a 2Hz MFR, PF, CF
and VC are primarily second-order nonlinear systems,
whereas the SC synapse is a third-order nonlinear system,
given the order of the system is defined as the order of the
systems nonlinearity.

3.1 Estimated PV kernels for the parametric models
of the four central synapses

The four synapses included in this paper show different
forms of STP. This could be revealed by a simple, fixed-
interval train (FIT) simulation (Fig. 3). For instance, during
a 100Hz train (10 pulses), the EPSC amplitudes of SC
synapse peak at the second impulse and then decline in the
rest of the impulses; the EPSC amplitudes of PF synapse
keep increasing from the second impulse to the fourth
impulse and then plateau; whereas in both CF and VC
synapses, EPSC amplitudes monotonically decline. This
FIT simulation only shows the behavior of the synapses
with respect to 10ms intervals. In the kernel models
estimated with random-interval trains, the four different
forms of STP are fully quantified with respect to arbitrary
IPIs and explicitly visualized in the kernels. To make the
kernel results comparable, third-order PV kernel models are

Table 2 The NRMSEs of the estimated PV models for the four types
of synapses (using the parameter values in Table 1) for Poisson RIT
inputs different from the ones used for PV kernel estimation

Model order SC PF CF vC

15t 27.98 40.27 13.1 32.72
ond 15.32 3.82 4.82 435
3 4.72 0.27 2.36 3.66
4th 1.89 0.21 1.74 2.23
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Fig. 3 The EPSC responses simulated with the parametric models
of the four synapses for a fixed-interval input train of ten impulses
(IPI of 10 ms or 100 Hz)

used in all four synapses. These models precisely predict
the outputs of the synapses for 2Hz Poisson random inputs

(Fig. 4).
3.1.1 SC synapse

Figure 2 and the first column of Fig. 5 shows the estimated
RDs for the third-order non-parametric model of the SC
synapse. The first-order RD (7)) is equal to the initial
release probability of the synapse (= k; = F; = 0.24). The
second-order RD, r,(7), represents the modulatory effect of
a single preceding impulse upon the present response as a
function of the IPI value 7. It is seen that this effect is
positive (i.e., facilitatory) for all IPI values up to about
400ms, diminishing for larger IPI values. Maximum
second-order facilitation is observed for the shortest IPI
and it is less than half the respective value of the second-
order PV kernel, &,(7), that does not take into account the
depressive effect of third-order dynamics (represented by
ks(7, 7), which is solely depressive for this synapse; see
Fig. 2(A) and (C) for comparison). Note that r,(7) depends
on k, (1) and ks(7, 7), according to Eq. (21) and its
maximum value at the shortest IPI (120%) matches the
maximum paired-pulse facilitation ratio in the parametric
model of the SC synapse (p — 1 = 1.2; Fig. 2(C). The third-
order RD, r3(q, 72), describes the joint contribution of two
preceding impulses to the present response as a function of
the two IPI intervals 7 and 7,. It is shown to be solely
depressive [with double the values of the third-order PV
kernel, according to Eq. (22); see Fig. 2(B) and (D) for
comparison] with the most negative value at the shortest IP1
interval being almost three times the value of k. This result

shows that the SC synapse has a strong depressive third-
order nonlinearity. For an input of three impulses, e.g., the
first three impulses in the 100Hz FIT (Fig. 3, first row), the
response (11, T») to the most recent impulse (termed
“present”) is facilitated by the positive second-order
contributions of each preceding impulse, 7,(7) and (1),
and depressed by the negative third-order joint contribution
of the two preceding impulses r3(7y, 7»; Fig. 2E). When the
absolute value of r3(m, 7) is larger than r,(7), the third
response becomes smaller than the second response and
forms a peak in the second response, which is precisely
what happens in the 100Hz FIT (Fig. 3, first row). The
estimated PV kernels and the corresponding RDs, 7, and r3,
fully quantify the effects of paired-pulse facilitation and
triple-pulse depression for arbitrary IPIs in SC synapses.

The small prediction errors imply accurate estimation of
the PV kernels and RDs. In addition, the estimated RDs are
also directly validated with the RDs numerically calculated
through the parametric model. The estimated 7, and r; well
approximate the actual », (Fig. 2(C), dashed line) and r;
(not shown) with arbitrary IPIs.

3.1.2 PF synapse

The second column of Fig. 5 shows the obtained results for
the PF synapse. As indicated for the SC synapse model, 7,
(=k,) is equal to the initial release probability (¥, = 0.05),
which is smaller than that of the SC synapse. The obtained
RDs for the PF synapse have similar qualitative character-
istics with the SC synapse, i.e. r, is positive for all IPIs
(solely facilitatory) and r; is negative for all IPIs (solely
depressive). However, the magnitude of r, is much larger
than that of the SC synapse because of the much higher

e UMl 1

P lhi it 4
e | [T |

ve | lmtthinne b

2s

Fig. 4 The EPSC responses simulated with the parametric models of
the four synapses (bars) for a Poisson random-interval train (RIT)
input with 2 Hz mean firing rate (MFR), and the predictions of the
third-order PV models (circles) accurately replicating the four
different forms of STP
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Fig. 5 The estimated RDs of the four types of synapses. Each column shows the RDs of one type of synapse. Note that in the SC, PF and CF
synapses, 7 is equal to the initial release probability, but in the VC synapse, r is equal to unity by definition and thus not shown

paired-pulse facilitation ratio in the PF synapse (p = 3.1).
Also, the magnitude of 73 becomes much smaller compared
to that of the SC synapse model. This confirms the NRMSE
result showing that the majority of the PF synapse
nonlinearity is of second order (Table 2). In a triple-pulse
train, e.g., the first three impulses in the 100Hz FIT (Fig. 3,
second row), the third response y(r, 7») is strongly
facilitated by the second-order contributions of each of the
preceding impulses, (7)) and r,(72), and only weakly
depressed by the negative third-order joint contribution of
the two preceding impulses 73(7y, 72). The train thus shows
a nearly monotonic-increasing pattern.

3.1.3 CF synapse

The third column of Fig. 5 shows the obtained results for
the CF synapse. The value of r; is equal to the initial
release probability 0.35, which is larger than in the previous
two synapses. The values of r, are negative for all IPIs, and
they are smaller in absolute value than the previous two
synapses. The values of r; are also negative and small
relative to 75, indicating that the second-order nonlinearities
are dominant in the CF synapse, as in the case of the PF
synapse. Contrary to the SC and PF synapses, the CF
synapse shows negative r, values that quantify the
depressive effect of each preceding impulse upon the
present response as a function of the IPI. The absolute
values of r, decline rapidly for IPI < 140ms and more
slowly for longer IPIs until they diminish around 2,000ms,
indicating that we cannot fit the waveform of r, with a
simple exponential function. We also observe that the form
of r3 is biphasic, crossing from negative (depressive) to
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positive (facilitatory) values around IPI of 100ms. The peak
value of 7, (—35% at the minimum IPI) is equal to the initial
release probability of this synapse.

3.1.4 VC synapse

Similar to the CF synapse, the VC synapse has a dominant
second-order suppressive kernel/RD (Fig. 5, fourth col-
umn). However, unlike the CF synapse, the small values of
ry are positive for the VC synapse. Note that | (not plotted)
is equal to 4y (=1), which is defined as the baseline
response amplitude in the DD, model. We observe that
the waveform of 7, is comprises of an early fast-recovering
component that is strongly negative and a subsequent slow-
recovering component that has weaker negative values.
This result shows that the two depressive components (D;
and D, in Eq. 8) in the parametric model of the VC synapse
are captured by the second-order kernel of the non-
parametric PV model. The facilitation determined by F in
the parametric model of the VC synapse is masked by D,
and D, in r,, since the overall effect of Dy, D, and F is
suppressive. The small values of r; indicate that the
nonlinearity of the VC synapse is primarily of second order.

3.2 Interpretation and comparison of the non-parametric
models of the four synapses

The first three synapses (SC, PF and CF) share the same
parametric model structure but have different parameter
values. The corresponding non-parametric PV kernel
models provide an elucidating way to appreciate how the
key model parameters affect the input—output transforma-
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tional properties of each synapse (Fig. 5). For instance, the
nonlinearities of the PF synapse are primarily determined
by the residual calcium-dependent facilitation mechanism.
The depression mechanism is relatively weak due to the
fact that PF synapse has a very small initial release
probability (0.05) which limits the depression caused by
vesicle depletion. These are reflected by the prominent
positive 7, and relatively small negative »;. By contrast, the
SC synapse has a much higher initial release probability
(0.24) which causes a higher level of depletion, leading to
larger negative values of r3, i.e., in a triple-pulse train, the
joint contribution of pairs of preceding impulses (exclusive
of their second-order contributions) to the present output
becomes strongly negative because of the small number of
available vesicles after two consecutive releases. Nonethe-
less, the modulatory effect of each single preceding impulse
is still facilitatory (as indicated by the positive values of ;).

The CF synapse lacks the facilitation mechanism
(Dittman et al. 2000). In its FD model, the F factor
remains constant through time regardless of the input
pattern (Table 1). Its nonlinearity is exclusively determined
by the kinetics of recovery from vesicle depletion which is
significant due to the high initial release probability (0.35),
thus its r, values are negative. Negative also are the r3
values for short IPIs, but become slightly positive for
IPIs longer than about 100ms.

The VC synapse has a different parametric model
structure involving two depression factors in addition to
the facilitation factor. The respective non-parametric PV
model provides a general representation of its input—output
transformational properties and makes it possible to assess
the functional similarities and differences with the different
STP characteristics of the other three types of synapses—
even though the latter have different forms of parametric
models. The main distinguishing characteristic of the para-
metric VC synapse model is its double-component depres-
sion (D; and D,) which results in a double-exponential
shape for r, (with time courses approximately matched by
the time-constants 7, and 7p, given in Table 1). The fast
facilitation factor (F) of the parametric model of the VC
synapse is reflected on the positive values of ;. Note that
the FD model of the CF synapse also yields a double-
exponential shape for r, (see third column of Fig. 3) which
is due to the residual calcium-dependent recovery of
depletion, resulting in different recovery rates for different
IPIs—i.e. when the IPI is short, the residual calcium caused
by a preceding impulse has a high concentration and results
in a fast recovery rate; while for long IPIs, the residual
calcium decays to lower levels that result in a slow recovery
rate. This mechanism is modeled differently in the two
parametric models but its effects on the STP are represented
similarly in the respective non-parametric models, assisting
the comparison of their functional characteristics.

In summary, the results above show that each form of
synaptic STP has its own characteristic pattern that is
reflected quantitatively on the shapes, polarities and time
durations of its PV kernels and corresponding RDs. It is
evident that the PV kernels and the corresponding RDs
contain quantitative and biologically interpretable informa-
tion about the dynamics and nonlinearities underlying the
STP processes in these four types of synapses.

3.3 Higher-order PV models for higher input firing rates

It is shown above that, for Poisson RIT inputs with MFR of
2Hz, the third-order PV models are able to highly
accurately predict the outputs of all four types of synapses.
For such inputs, the IPI values are random independent
samples drawn from an exponential distribution with mean
value of 500ms. In this study, we use an absolute refractory
period of 2ms and the IPI values are generated in the range
of 2-5,000ms. The importance of using Poisson RIT input
is that it includes many of the temporal patterns typical of
CNS synapses in physiological conditions. The MFR of
2Hz is selected on the basis of the firing characteristics of
many central neurons, e.g., hippocampal CAl and CA3
neurons of free-moving rats (Berger et al. 1983; Barnes et
al. 1990; Deadwyler et al. 1996). However, different firing
characteristics with higher or lower average rates and/or
different distributions also exist. The effect of the different
firing rates on the obtained PV models is discussed further
in this section.

In order to examine the effect of higher firing rates on
the efficacy of the non-parametric modeling approach, we
simulate the parametric models with inputs of higher MFRs
and estimated the respective PV kernels to examine the
predictive capabilities of the resulting non-parametric
models for these input characteristics. The PV kernels of
the parametric models of the SC, PF and CF synapses are
estimated with data obtained from Poisson RIT inputs with
various MFRs in the range of 0.5-100Hz. Because of their
random character, these inputs contain practically all
possible input sequences that can naturally occur under
physiological conditions. Figure 6 shows the prediction
NRMSE of the estimated PV models of various orders
(from first to fourth order) for the various input MFRs. The
NRMSE of the first-order PV model quantifies the average
output variations around the mean response of the synapses
for each input MFR and can be used as a baseline to judge
the performance of the higher-order PV models. In the case
of the PF and CF synapses, it is seen that the second-order
PV models can account for a significant portion of the
output variations and the third-order PV models can predict
the outputs very well over the entire range of input MFRs
(up to 100Hz) with the fourth-order PV models offering
insignificant improvement. In the SC synapse, the second-
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Fig. 6 Predictive accuracies of the non-parametric PV models of three
types of synapses (SC, CF, PF) for various MFRs of the RIT input.
Upper panel: input MFRs in the range of 0.5-10 Hz. Lower panel:
input MFR in the range of 0.5-100 Hz (plotted in log scale)

order PV model gave poor predictions for MFRs higher
than 1Hz, as already indicated in the results of the 2Hz
MFR presented above, but the NRMSE of the third-order
PV model was reduced to levels below 5% for MFRs up to
2Hz (as shown above) and remained below 10% for MFRs
less than 30Hz. The NRMSE of the third-order prediction
increased significantly for MFRs larger than 30Hz, reaching
almost 20% for the maximum MFR of 100Hz. The use of a
fourth-order PV model reduced the NRMSE further,
keeping it below 5% for MFRs up to 6Hz and below 10%
for MFRs less than 50Hz. A steady increase of the fourth-
order prediction NRMSE with increasing input MFR is
observed that indicates the need for even higher-order PV
kernels to capture better the system nonlinearities and
improve the model prediction for higher input MFRs.
Figure 7 shows the PV kernels and RDs of the fourth-
order PV model of the SC synapse estimated with a Poisson
RIT input of 2Hz MFR. The fourth-order term (k4/r4) in the
fourth-order PV kernel model contributes to the prediction
of the outputs with more than two preceding input
impulses. For example, for a quad-pulse train (Fig. 7G),
the fourth output is predicted by the fourth-order PV kernel
model as the summation of the first-order term contributed
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by the present impulse (r), second-order terms from each
preceding impulse [ro(77), 72(7) and ry(73)], third-order
terms contributed by each pair of preceding impulses [r3(7,
T), r3(11, 73) and r3(m, 73)] and the fourth-order term
jointly determined by all three preceding impulses [r4(7,
T, T3), Fig. 7G]. k4 and r, are positive 3D matrices (M x M
x M) with peak value at minimum intervals. They allow the
fourth-order model to more accurately capture the systems
nonlinearities associated with more-than-two preceding
impulses in the system memory window.

In the fourth-order PV model, the estimated k; was the
same as that of the third-order PV model, while &, and k3
were different from those of the third-order PV model
(compare Figs. 2 and 7). This is due to the fact that both PV
models are mathematically incomplete as shown in their
residual errors, although they are practically complete
according to the chosen NRMSE threshold (5%). In
mathematically incomplete PV models, the extra high order
terms, e.g., k4 in the fourth-order PV model of the SC
synapse, are nonzero. These high order terms project to the
lower-order PV kernels (k, and k3) of the lower-order PV
models, e.g., the third-order PV model of the SC synapse in
this case, and make these lower-order PV kernels (k, and
k3) different in the two models. Direct comparison of the
PV kernels is generally non-informative in the mathemat-
ically incomplete PV models of different model orders. By
contrast, the PV kernels of the mathematically complete
models do not change as the model order changes since
these PV models have the same non-zero terms and the
additional higher-order PV kernel in the higher-order PV
model will not interfere with the lower-order PV kernels
since they are equal to zero. However, it is remarkable that
the RDs of the two practically complete PV models are
nearly identical (Figs. 2 and 7). Such favorable property of
the RD representation can be explained as the following: as
shown in the Method section, RDs, which are derived from
the PV kernels, have a simple interpretation, i.e., the ith-
order RD, r;, exclusively represents the ith-order modula-
tory effect of any i-1 different preceding input impulses on
the present output. ith-order RD thus does not contribute to
the prediction of the responses with i-1 or fewer impulses.
When the MFR of the Poisson random input is low, the
probability of having many input impulses in the modeled
system’s memory window (M) is small. The majorities of
the input patterns (isolated by intervals larger than M) are
single impulses, pairs and triplets. Practically complete
models, e.g., third and fourth-order PV models of SC
synapse, achieve low NRMSE mainly by accurately
predicting those commonly encountered patterns. The first,
second and third-order RDs, which correspond to the
prediction of single impulses, pairs and triplets respectively,
are all very close to their true values (as indicated by the
small NRMSE and validated by the direct calculation) and
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Fig. 7 The PV kernels and
corresponding RDs of the kl =0.24
fourth-order PV model of the k
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therefore remain stable across different model orders. In the
PV kernel representation, by contrast, ith-order PV kernel
also contributes to the predictions of the responses with i-1
or fewer impulses. The estimates of the lower-order PV
kernels, e.g., k, and ks, are thus altered by the inclusion of
higher-order PV kernels and consequently show different
values across different model orders.

Figure 8 shows the changes in the RDs of first, second
and third order that are based on the PV kernel estimates of

the second, third and fourth-order PV models of the SC
synapse, obtained for various values of input MFR in the
range from 0.5 to 10Hz. The obtained », values show a
significant dependence on input MFR for the second-order
model, but no significant dependence for the fourth-order
model. For the third-order model, which was selected for
the main stimulation protocol with MFR of 2Hz, the
dependence of the r| values on the input MFR is significant
only for MFR > 4Hz. The obtained r, values exhibited a
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Fig. 8 The dependence of the
RDs of the SC synapse on the
input MFR and PV model order.
(A), (C) and (E) The second-
order RD r, for the second, third 200
and fourth order PV models as a

function the input MFR f. (B) 100
The first-order RD 7, for the 2nd
second, third and fourth order 0
PV models as a function the (%)
input MFR /. (D) and (F) The -100
diagonal slice of the third-order 1000
RD r; for the third and fourth
order PV models as a function
the input MFR f. Note that r, r,
and r3 are less variant with
changing input MFR for the
fourth order PV model
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strong dependence on input MFR for the second-order PV
model, changing from positive to negative values around
3Hz. Significant dependence was also observed for the
third-order PV model when MFR was higher than 4Hz, but
no significant dependence was observed in the case of the
fourth-order PV model for MFR up to 8Hz. The obtained r;
values exhibited a strong dependence on input MFR for the
third-order PV model (especially for MFR > 3Hz), but less
dependence for the fourth-order PV model. These results
show that the kernel estimates and the corresponding RDs
of higher-order PV models not only provide better output
predictions as indicated in the NRMSE results, but also are
more robust to the changes of input MFR. When the input
MFR is further increased (e.g., higher than 15Hz),
significant changes occur even for the fourth-order PV

@ Springer

(B) .

0.5

f (Hz)
(D)
”3(’[,’5)
200 ' .~
(%)
-200
-400

1000

(¥)

200

(%)
-200
-400

1000

500

f (Hz) T (ms) f (Hz)

model (not shown), indicating that higher-order models are
needed to fully represent the system dynamic nonlinearities
in this higher firing rates.

In addition to the input characteristics (e.g., MFR), the
other determinant of the required model order, obviously, is
the system nonlinearity to be modeled. For example, for a
second-order nonlinear system, no matter how the MFR is
enhanced, second-order PV model will always be complete.
The number of impulses in the system memory window
only provides the upper-bound of the required model order.
This is shown in the PF synapse models (Fig. 9). The
second order kernel model of PF synapse was constant in
the range of 0.5-5Hz showing that in this range, PF
synapse could be sufficiently characterized as second-order
nonlinear system; the third and fourth order kernel models
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Fig. 9 The dependence of the
RDs of the PF synapse on the
input MFR and PV model order.
(A), (C) and (E) The values of
1, from the second, third and
fourth order PV models for
different Poisson input MFRs.
(B) The values of r; from the
second, third and fourth order
PV models for different Poisson
input MFRs. (D) and (F) Diag- -100 &7
onal slice of 73 from the third 1000
and fourth order PV models for
different Poisson input MFRs.
No significant dependence is
observed for the third and fourth
order model, indicating com-
pleteness of the PV model for
input MFR up to 10 Hz
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were constant in the whole range of 0.5-10Hz indicating
that in this broader range, third-order model was sufficient.
This result shows that the PF synapse is intrinsically less
nonlinear than the SC synapse, in the sense that for a given
input range, it can be fully characterized by lower-order
kernel models.

In summary, the required model order to adequately
characterize a system is jointly determined by both the
input characteristics and the intrinsic system nonlinearity.
Higher-order kernel models are more complete and
robust to the change of input characteristics (e.g.,
MFR) in general. RDs of practically complete models
are insensitive to the model order and thus are more
appropriate for representations and interpretations of the
system nonlinearity.
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4 Discussion

In this paper, we applied a general, non-parametric
modeling approach to the study of STP in CNS synapses.
In this approach, the input—output transformational proper-
ties of various synapses are probed with broadband stimuli
(Poisson RITs). The synaptic nonlinearities, associated with
STP, are represented by non-parametric models utilizing PV
kernels estimated from input—output data, which character-
ized fully the transformation of the presynaptic sequence of
impulses into the postsynaptic EPSCs. Using a recently
developed technique, the PV kernels can be accurately and
reliably estimated from short input—output datasets. In the
first half of this paper, we estimated the PV kernels using
the input—output data simulated with established parametric
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models of several CNS synapses for Poisson random
impulse trains (RITs) with MFR of 2Hz. It was found that
third-order PV models (involving first, second and third-
order PV kernels) could predict accurately the outputs of
these parametric synapse models to novel input patterns (so
long as the MFR did not exceed significantly 2Hz). The
nonlinear dynamics defined by the specific mathematical
form and associated parameter values of the parametric
models were fully and reliably captured by the respective
non-parametric models. The PV kernels and the associated
RDs quantitatively described the transformational input—
output properties of the synapses and facilitated interpreta-
tion of their functional properties. In the second half of this
paper, we further investigated the predictive accuracy of
these non-parametric models for RIT inputs with higher
MFRs and showed that this approach can be successfully
applied to this case, but only if we increase sufficiently the
order of the PV models to capture the higher-order
dynamics and nonlinearities associated with higher input
MFRs.

4.1 On Poisson—Volterra kernel model

Non-parametric method was first used to model synaptic
transmission by Krausz and Friesen (Krausz and Friesen
1977). In their study, they estimated Wiener kernels of the
lobster cardiac ganglion synapse using cross-correlation
technique. The approach used in this study has several
important differences and improvements compared to their
approach. First, instead of Wiener kernels, we estimated
Volterra kernels, which renders the kernel estimates
invariant to input characteristics when a mathematically
complete model is used. The corresponding RDs of the
estimated PV kernels can be directly related to conventional
electrophysiological measurements, e.g., r; is baseline
postsynaptic response amplitude and 7, is the paired-pulse
facilitation/depression function. The utilization of RDs
relaxes the requirement of mathematical completeness of
the model in representation, since they remain invariant in
practically complete models. By contrast, Wiener kernels
highly depend on the input characteristic, e.g., MFRs of the
Poisson input train. For example, first-order Wiener kernel
is the mean of the response amplitudes during the Poisson
train, which obviously depends on MFR. Second, in this
study, the PV kernels of the non-parametric models are
estimated using the Laguerre expansion technique that
allows accurate and efficient kernel estimation with short
datasets (Marmarelis 1993). Most of PV kernels in this
paper are estimated with only 400 input—output pairs,
which is a significant advantage when we consider that the
conventional cross-correlation technique usually requires
thousands of input—output pairs for comparable accuracy
(Krausz and Friesen 1977; Berger et al. 1988a, 1988b;
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Sclabassi et al. 1988). In addition, the Laguerre expansion
technique allows the estimation of PV models of higher
orders (i.e., third and fourth order) which is extremely
difficult using the conventional binning method, since the
latter involves much larger number of kernel coefficients to
be estimated. Compared to previously obtained second-
order PV kernel models (Gholmieh et al. 2001), higher-
order models provide more accurate output predictions,
because they capture the higher-order nonlinearities associ-
ated with more complex input—output properties and/or
higher input MFRs. This is demonstrated clearly in the SC
synapse result, where there is a dramatic drop of prediction
error when we increase the model order from second to
third. For this specific system, only PV models of order
higher than second are practically complete, in the sense
that they capture the major effect of system nonlinearity. By
contrast, the second-order PV model, being an incomplete
model, fails to give accurate prediction. Furthermore,
because of the prominent third-order nonlinearity of the
SC synapse, the kernel estimates of the second-order PV
model are biased by the presence of the higher-order
nonlinearities. Thus, the second-order model yielded values
of r, that are markedly different from the actual paired-
pulse facilitation/depression function (Fig. 8).

It is important to point out again that the practical
completeness of the PV model is also dependent on the
MFR of the random inputs. When input MFR increases, the
possibility of higher-order nonlinear interactions increases.
In SC synapses, when the MFR of the Poisson RIT is 2Hz,
the third-order PV model is practically complete, but when
the MFR is increased to 10Hz, the fourth-order PV model is
practically complete. This raises one important aspect of the
non-parametric modeling approach: namely their guaran-
teed ability to predict the output is only for input patterns
that are within the range of the inputs with which they are
estimated. Although this is often true for parametric
modeling as well, it is more critical for non-parametric
modeling since non-parametric model is purely data-driven
and in general lacks the extrapolation power. Therefore in
experimental design, it is crucial to use broadband inputs
that cover the patterns of physiological interest.

Another form of quantitative model of STP in neuro-
muscular junctions of a crustacean was introduced by Sen
et al. (1997). This model consists of a cascade of three
components: a linear filter K,, followed by a static
nonlinearity F, followed by another linear filter K;. Filter
K; describes the shape of the postsynaptic response, e.g.,
excitatory junctional current/potential (EJC/EJP), and is
equivalent to the “typical EPSC waveform” that we used
here to deconvolve the EPSC train in Part II of this study
(see companion paper for details). The other filter K is the
first component of the cascade and serves to integrate the
input activity over a longer past epoch. Sen et al. showed
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that it has an exponential form (with a negative exponent)
extending over several seconds. The output of K, (i.e. the
integrated input past activity) is transformed by the static
nonlinearity F, which was shown to exhibit a supra-linear
form (exponential-like, with a positive exponent). This
model form represents the linear-nonlinear (LN) cascade
model studied extensively in the 70s in connection with
various sensory systems (for a review, see Marmarelis and
Marmarelis 1978). The PV kernels estimated in this study
correspond to the cascade of K, and F in the sense that they
describe the nonlinear dynamic transformation of a point-
process input (presynaptic spike train) to varying-amplitude
outputs (EPSC or EJC/EJP amplitudes) which represents
the combined effect of K, and F. It was shown that this
model can be successfully applied to several crustacean
neuromuscular junctions. However, it should be noted that
this LN model does not constitute a complete representation
of arbitrary nonlinear dynamics like the Volterra modeling
approach. It relies on the strong assumption that the
nonlinear dynamics of a particular system can be separated
into a cascade of a single linear filter followed by a single
static nonlinearity. The general Volterra representation is
equivalent to the Wiener—Bose model (composed of
multiple parallel linear filters feeding into a multi-input
static nonlinearity) or it can be decomposed into multiple
parallel LN cascades termed the “principal dynamic modes”
(Marmarelis 2004). We note that Sen et al. (1997) adopted
the LN approach for one important and valid aim, namely,
developing a methodology that is “as simple as possible
both to apply and to describe” while retaining a certain
degree of generality and interpretability. This aim is
different from the aim of the non-parametric modeling in
this study, since we seek a general and complete represen-
tation of STP that allows us to reveal the subtle features of
the nonlinear dynamical characteristics and use them to
guide the modification of the parametric model.

4.2 Parametric vs. non-parametric modeling

Before using experimental input—output (stimulus—re-
sponse) data, in this paper, kernel models are estimated
using input—output data simulated with four parametric
synapse models. There are several reasons for this: first, the
parametric synapse models included in this paper represent
several distinct forms of STP determined by the principle
physiological mechanisms/processes. They include a vari-
ety of input—output properties and make it possible to test
the generality of the non-parametric approach within a
broad context. Second, the parametric models are thor-
oughly known, stationary, nonlinear systems that allow
direct and unambiguous validation of the non-parametric
models. Third, the FD model capture the basic mechanisms
of STP, i.e., residual calcium-dependent facilitation and

depletion-based depression. As shown in Section 3, many
insights are gained by studying the relationships between its
key parameters, which represent fundamental biological
processes, and the kernels, which quantitatively describe
the functional input—output properties of the system.

Parametric and non-parametric approaches are developed
for distinct aims and have their relative strengths and
weaknesses in modeling a biological system (Berger et al.
1994), and thus can be used in a synergistic manner. In this
paper, we show that the non-parametric PV model provides
a quantitative description of the synaptic input—output
transformation without requiring prior assumptions about
the model structure. Furthermore, non-parametric model
extracts the system nonlinearities and expresses them in a
uniform and often simpler form. For example, the paramet-
ric FD model involves nonlinear differential equations;
Analytical solution of output for a given input pattern is not
obvious. On the other hand, using the non-parametric PV
model, prediction of outputs for a given input pattern only
requires simple arithmetical operations such as multiplica-
tion and summation. The uniformity and simplicity of
model mathematical form is critical for large-scale simu-
lations (Traub and Miles 1991) and hardware implementa-
tions (Tsai et al. 1998; Berger et al. 2001).

Most importantly, non-parametric models estimated
directly from the input—output experimental data can be
used to evaluate parametric models under broadband input
conditions in terms of their input-output transformational
property. The differences between the non-parametric
model estimated from experimental data and the equivalent
non-parametric model of the parametric model may expose
unknown physiological mechanisms/processes and suggest
specific modification to the parametric model. This is
shown in the companion paper (part II).
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