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Fig. 1. Experimental paradigm. (a) Schematic diagram of a hippocampal slice.
The bipolar stimulation electrode was placed on the CA1 stratum radiatum.
Poisson random interval stimulation trains were delivered through a stimulation
electrode. A recording glass electrode was patched on the soma of a CA1
pyramidal neuron to record the elicited PSPs and action potentials. (b) Picture
showing a hippocampal slice with stimulating and recording electrodes. (c)
Picture showing a recording electrode patching on the soma of a CA1 pyramidal
neuron.

stimulation trains follow a broadband distribution. These broad-
band stimuli can elicit broad range of physiological responses
and nonlinearities that are resulted from the interactions of the
subcellular neuron processes mentioned earlier [26]–[29]. This
paradigm mimics the natural condition in biological nervous
system and elicits most of the neuronal processes mentioned
earlier as opposed to other simpler paradigms, e.g., somatic cur-
rent injection stimulation paradigm, which involves a smaller
subset of all possible mechanisms.

In this study, whole-cell patch clamp was performed to record
corresponding intracellular PSPs and action potentials, because
it provides a high-quality continuous tracing of neuron intracel-
lular signal in both subthreshold and suprathreshold response
regimes. The SC-CA1 pyramidal cell system was chosen for the
study because it is one of the most studied brain region.

In 2007, Song et al. used a similar modeling approach to cap-
ture neuron spike train transformations [30]. The data collected
in that study were all-or-none suprathreshold activities (in vivo
extracellular action potentials) that limit the biological interpre-
tation of the model. One goal of this study is to extend that
approach to the modeling of intracellular activities that includes
both subthreshold and suprathreshold dynamics and their inter-
actions. Similar to the previous model [29], the model structure
was constructed based on three principal neuronal processes
that are common in all spike-input and spike-output neurons
(see Fig. 2): 1) transformation from presynaptic spike to PSP;
2) action potential generation; and 3) spike-dependent modifi-
cation of membrane potential.

The signal flow of the model starts from the entering of presy-
naptic spikes to the feedforward blocks (see Fig. 2) that char-

Fig. 2. Model comprises three major components: feedforward Volterra ker-
nels (k), a threshold (� ), and a feedback Volterra kernel (H). The feedforward
kernels are up to third order, describing the transformation from presynaptic
stimulation (x) to PSP (u). The threshold (� ) is a constant membrane potential
level, above which output action potentials (yh) are generated. The prethresh-
old membrane potential (nonspiking) (w) is the summation of PSPs (u) and
spike-triggered after-potentials (a). The operation Σ is defined as superimpo-
sition. The model output (y) is the superimposition of prethreshold membrane
potentials (w) and templates of action potentials.

acterize the nonlinear transformation from presynaptic spikes
to PSPs; PSPs then are passed to a constant threshold, above
which action potentials are formed; output action potentials
then trigger a feedback block that describes the dynamics of
spike-triggered after-potential that, in turn, modifies the mem-
brane potential following each action potential. In our approach,
both feedforward and feedback blocks were implemented with
Volterra models [31], [32]. In a Volterra model, the output sig-
nal is expressed in terms of the input signal by means of a
Volterra power series. The input–output nonlinear dynamics of
the system is described by a series of progressively higher order
Volterra kernels that can be directly estimated from the experi-
mental input–output data. This data-driven property avoids the
modeling errors caused by unknown mechanisms and/or partial
knowledge of the system.

II. MATERIALS AND METHODS

A. Experimental Procedures

Rat hippocampal slices were prepared acutely before each ex-
periment. Two-week-old male Sprague–Dawley rats were anes-
thetized with inhalant anesthetic, Halothane (Halocarbon Lab-
oratory, NJ), before standard slicing procedures. Hippocampal
slices (400 µm) were prepared by using a vibrotome (Leica VT
1000 s, Germany) under iced sucrose solution. A surgical dis-
ruption of the connection between CA3 and CA1 was performed
on each slice before it was transported to oxygenated bath so-
lution for maintenance at 25 ˚C. The sucrose solution contained
(in millimoles) Sucrose 206, KCl 2.8, NaH2PO4 1.25, NaHCO3
26, Glucose 10, MgSO4 2, and Ascorbic Acid 2 at pH 7.5 and
290 mOsmol. The bath solution contained (in millimoles) NaCl
128, KCl 2.5, NaH2PO4 1.25, NaHCO3 26, Glucose 10, MgSO4
1, Ascorbic Acid 2, and CaCl2 2 at pH 7.4 and 295 mOsmol.

The experiments were performed on the hippocampal SC-
CA1 system. CA1 neurons in the rat hippocampus have two
elaborately branching dendritic trees (basal and apical) that
emerge from the pyramid-shaped soma [see Fig. 1(a)]. The
basal dendrites occupy the stratum oriens, and the apical den-
drites occupy the stratum radiatum (proximal) and the stratum
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lacunosum–moleculare (distal). The distance from the stratum
pyramidale to the hippocampal fissure (hf) is about 600 µm, and
the distance from the stratum pyramidale to the alveus is about
300 µm, yielding a 1 mm distance from end to end. CA1 pyra-
midal neurons are covered with about 30 000 dendritic spines.
The principal excitatory inputs to CA1 pyramidal cells arrive
from CA3 through SC. The inputs from CA3 pyramidal neurons
through SC form synapses on the apical dendrites in the stratum
radiatum and the basal dendrites in the stratum oriens [33], [34].

During whole-cell patch-clamp recording, hippocampal
slices were perfused with oxygenated bath solution at 25 ◦C. A
bipolar stimulation electrode was placed in the CA1 stratum ra-
diatum according to visual cues. Bipolar stimulation electrodes
were made in laboratory with formvar-insulated nichrome wire
(A-M Systems, Inc., WA). A recording mircopipette electrode
with 4 MΩ tip resistance patched on the somatic membrane
of CA1 pyramidal neuron to record the intracellular PSPs and
action potentials. The recording micropipette electrodes were
produced by heating and pulling thin-wall single barrel borosil-
icate glass tubing (World Precision Instrument, FL) using a
pipette puller (Sutter Instrument P-80/PC). The internal solution
of the recording electrode contained (in millimoles) Potassium-
gluconate 110, HEPES 10, EGTA 1, KCl 20, NaCl 4, Mg-ATP
2, and Na3-GTP 0.25 at pH 7.3 and 290 mOsmol.

A programmable stimulator (Multi Channel System, Ger-
many) was used to deliver Poisson random interval trains (RITs)
with a 2 Hz mean frequency with interspike intervals rang-
ing from 10 to 4500 ms [35]–[37]. These stimulation patterns
can induce a broad range of physiological mechanisms or pro-
cesses that have relatively shorter dynamic ranges, i.e., short-
term synaptic plasticity [28], [31]. The 2 Hz mean frequency
is consistent with the in vivo firing characteristics of rat CA3
pyramidal neurons [38], [39]. Whole-cell patch-clamp record-
ing in the mode of current clamp was performed with the HEKA
EPC9/2 amplifier with 10 kHz sampling rate. The intensities of
the stimulation spike trains were adjusted so that approximately
50% of the stimulations induced action potentials. This study
included 98 trials of 200 s recordings (400 stimulations in each
recording trial) in 15 cells from 13 different animals.

B. Modeling Procedures

PSP dynamics, spike generation, and spike-triggered after-
potential dynamics are separated in the model structure in a
physiologically plausible manner and are captured by an up
to third-order feedforward kernel, a constant threshold, and a
first-order feedback kernel, respectively (see Fig. 2). The feed-
forward kernels describe the nonlinear dynamical effects of
synaptic transmission, dendritic integration, and somatic inte-
gration and transform presynaptic spikes to PSPs [9], [40], [41].
If a corresponding PSP response is higher than the threshold,
a template waveform of an action potential is superimposed
to the membrane potential. The formed action potential then
triggers the feedback kernel and generates a spike-triggered
after-potential that modifies the following membrane poten-
tial [1], [11], [15], [42]–[45].

The model (see Fig. 2) can be expressed with the following
equations:

w = u(K, x ) + a(H, yh ) (1)

y =
{

w + action potential, w ≥ �
w, w < �.

(2)

In (1), w represents the prethreshold (nonspiking) membrane
potential that is the summation of the output of the feedforward
block, u, and the output of the feedback block, a. The feedfor-
ward block K transforms the presynaptic spike trains x to PSPs
u. The feedback block H describes the transformation from the
output spikes yh to the spike-triggered after-potentials a. In (2),
y represents the output of the neuron model, a continuous trace
of predicted subthreshold and suprathreshold membrane poten-
tials. If w is higher than or equal to the threshold � , a template
of an action potential is superimposed to w, and the feedback
kernel is triggered by the output action potentials yh; if w is
lower than � , y is equal to w.

The output of the feedforward block, u, is expressed with an
up to third-order Volterra model as

u(t) = k0 +
M k∑

� 1 =0

k1(� 1)x(t − � 1)

+
M k∑

� 1 =0

M k∑
� 2 =0

k2(� 1 , � 2)x(t − � 1)x(t − � 2)

+
M k∑

� 1 =0

M k∑
� 2 =0

M k∑
� 3 =0

k3(� 1 , � 2 , � 3)

× x(t − � 1)x(t − � 2)x(t − � 3) (3)

where k0 is the zero-order kernel, describing the output of the
system output when the input is absent, i.e., the resting mem-
brane potential. The first-order feedforward kernel k1 describes
the system’s first-order (but not single-pulse) response to x (see
the definitions of response functions in Table I for more expla-
nations). The second-order feedforward kernel k2 describes the
second-order (but not paired-pulse) response to x. The third-
order feedforward kernel k3 describes the third-order (but not
triple-pulse) response to x. Mk is the length of the memory
window.

The spike-triggered after-potential a in (1) is expressed with
a first-order Volterra model as

a(t) =
M h∑
� =1

h(� )yh(t − � ) (4)

where the feedback kernel h describes how an output action po-
tential yh triggers an after-potential. The output action potential
train yh was defined as

yh =
{

1, w ≥ �
0, w<�.

(5)

C. Laguerre Expansion of Volterra Kernel

The Laguerre expansion method effectively reduces the num-
ber of open parameters in the Volterra model by expanding the
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TABLE I
CONVERSIONS BETWEEN VOLTERRA KERNELS AND RESPONSE FUNCTIONS

Volterra kernels with Laguerre basis functions [32], [46], [47].
Both feedforward and feedback kernels are estimated by using
the Laguerre expansion method as

u(t) = ck 0 +
L∑

j =1

ck 1 (j )v
k
j (t)

+
L∑

j 1 =1

j 1∑
j 2 =1

ck 2 (j 1 , j 2)vk
j 1

(t)vk
j 2

(t)

+
L∑

j 1 =1

j 1∑
j 2 =1

j 2∑
j 3 =1

ck 3 (j 1 , j 2 , j 3)vk
j 1

(t)vk
j 2

(t)vk
j 3

(t) (6)

where

vk
j (t) =

M k∑
� =0

bj (� )x(t − � ). (7)

In (6), L denotes the number of Laguerre basis functions;
ck 0 ,ck 1 ,ck 2 , and ck 3 are the Laguerre expansion coefficients of
the feedforward kernels k0 , k1 , k2 , and k3 , respectively; and
vk

j (t) are the convolutions of the Laguerre basis functions bj

and the input stimulation train x.
Similarly

a(t) =
L∑

j =1

ch (j )vh
j (t) (8)

where

vh
j (t) =

M h∑
� =1

bj (� )yh(t − � ). (9)

In (8), L denotes the number of Laguerre basis functions and
ch denotes the Laguerre expansion coefficients of the feedback
kernel h. In (9), vh

j (t) are the convolutions of the Laguerre basis
functions bj and the output action potentials yh. Laguerre basis
functions bj is expressed as (10), shown at the bottom of the
page.

where � is the time epoch value; j is the number order of
basis functions; and � is the Laguerre parameter (0 < � < 1)
determining the rate of exponential asymptotic decline of the
Laguerre basis functions.

D. Evaluation and Quantification of Model
Prediction Performance

The model parameters/coefficients are estimated according to
two error measures: 1) normalized mean square error (NMSE)
that was used to evaluate the nonspiking PSPs waveform pre-
diction and 2) spike prediction error rate (SPER) that was used
to evaluate spike prediction. NMSE is defined as

NMSE =
T∑

t =1

(y(t) − ỹ(t))2 /
T∑

t =1

ỹ(t)2 (11)

where ỹ is the recorded data; y is the predicted data; and T is the
total number of data points in ỹ and y. In both ỹ and y, action
potentials are excluded without loss of generality.

SPER is defined as the total number of false predictions di-
vided by the total number of stimulations, expressed as

SPER

=
number of false-positives + number of false-negatives

total number of stimulations
.

(12)

Both false positive and false negative cases are false predic-
tions made by the model. False positive refers to the situation
that the model predicts a response event (a PSP response evoked
by a stimulation) to form an action potential, but the corre-
sponding response event does not form an action potential in
recordings. False negative refers to the situation that the model
predicts a response event not to form an action potential, but the
corresponding event in recordings forms an action potential.

E. Estimations of Model Parameters

In this model, � , L, ck , ch , and � are the open parameters
that need to be estimated according to either one of the two
error measures. The optimization processes are discussed in the
following.

1) Laguerre Parameter � : Laguerre parameter, � (0 < � <
1), determines the rate of the exponential asymptotic decline of
the Laguerre basis functions. For each in-sample training trial,

bj (� ) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)� � (j −� )/ 2(1 − � )1/ 2 ×
�∑

k=0
(−1)k

(
�
k

)(
j
k

)
� � −k (1 − � )k , (0 ≤ � < j )

(−1)j � (� −j )/ 2(1 − � )1/ 2 ×
j∑

k=0
(−1)k

(
�
k

)(
j
k

)
� j −k (1 − � )k , (j ≤ � ≤ M )

(10)
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Fig. 5. Representative clip of recorded data (the upper panel) and the corre-
sponding predicted data produced by the K3 model (the lower panel) with an
optimal threshold (dashed line).

ck and ch and the Laguerre basis functions bj as follows [30]:

k1(� ) =
L∑

j 1 =1

ck 1 (j 1)bj 1 (� ) (15)

k2(� 1 , � 2) =
L∑

j 1 =1

j 1∑
j 2 =1

ck 2 (j 1 , j 2)
2

× (bj 1 (� 1)bj 2 (� 2) + bj 2 (� 1)bj 1 (� 2)) (16)

k3(� 1 , � 2 , � 3) =
L∑

j 1 =1

j 1∑
j 2 =1

j 2∑
j 3 =1

ck 3 (j 1 , j 2 , j 3)
6

×

⎛
⎜⎜⎜⎜⎜⎝

bj 1 (� 1)bj 2 (� 2)bj 3 (� 3)
+bj 1 (� 1)bj 3 (� 2)bj 2 (� 3)
+bj 2 (� 1)bj 1 (� 2)bj 3 (� 3)
+bj 2 (� 1)bj 3 (� 2)bj 1 (� 3)
+bj 3 (� 1)bj 1 (� 2)bj 2 (� 3)
+bj 3 (� 1)bj 2 (� 2)bj 1 (� 3)

⎞
⎟⎟⎟⎟⎟⎠

(17)

h(� ) =
L∑

j =1

ch (j )bj (� ). (18)

To examine the effect of a given number of input pulses, we
utilized the notion of response functions [31], [49]. As shown
in Table I, response functions (r) can easily be calculated from
Volterra kernels (k). The first-order response function r1 de-
scribes the single-pulse response elicited by a single input pulse;
the second-order response function r2 describes the paired-pulse
effect caused by pairs of input pulses; and the third-order re-
sponse function r3 describes the triple-pulse effect caused by
triplets of input pulses. The feedback Volterra kernel is only of
first order; thus, the feedback response function is equal to the
feedback Volterra kernel (h), as in (18). Examples of response
functions are plotted in Figs. 6–8.

Fig. 6. Response functions of a K1 model. (a) Single-pulse feedforward re-
sponse function (r1 ) is the single-pulse response to an input event. (b) Feedback
response function (h) describes the spike-triggered after-potential. The insets
illustrate the relations between input pulses, output spike, and the time epoch � .

Fig. 7. Response functions of a K2 model. (a) Single-pulse feedforward re-
sponse function (r1 ). (b) Paired-pulse feedforward response function (r2 ). (c)
Feedback response function (h). The insets illustrate the relations between input
pulses, output spike, and the time epoch � .

G. Out-of-Sample Prediction

The out-of-sample prediction is performed in two steps. First,
the PSP u is predicted as follows:
⎡
⎢⎢⎣

u(1)
u(2)

...
u(T)

⎤
⎥⎥⎦

T ×1

= [ 1 V k
1 · · · V k

p ]T ×(1+p)

⎡
⎢⎢⎣

ck 0

ck (1)
...

ck (p)

⎤
⎥⎥⎦

(1+p)×1

.

(19)
Second, each PSP response is checked consecutively in the

time order to see if it surpasses the threshold � . If it does so, an
action potential template is superimposed at the time point to
the surpassing membrane potential, and a spike-triggered after-
potential a is added to the subsequent prethreshold membrane
potential w, forming a recurrent loop in the prediction process
(see Fig. 2). All predictions presented in this paper are out-of-
sample predictions, i.e., using one dataset in training and another
independent dataset in prediction. The prediction processes are
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Fig. 8. Response functions of a K3 model. (a) Single-pulse feedforward re-
sponse function (r1 ). (b) Paired-pulse feedforward response function (r2 ). (c)
Triple-pulse feedforward response function (r3 ). (d) Feedback response func-
tion (h). The insets illustrate the relations between input pulses, output spike,
and the time epoch � .

computationally efficient and were performed with a PC (AMD
Phenom 9750).

III. RESULTS

The single-input and single-output (SISO) model described in
this paper can capture high-order nonlinear dynamical charac-
teristics of the Schaffer collateral (SC)-CA1 system. Represen-
tative recorded and predicted data (produced by the K3 model)
are shown in Fig. 5.

To demonstrate how progressively higher order kernels con-
tributed to the prediction accuracy, we built three models for
each dataset: K1 includes an first-order feedforward kernel (k1),
K2 includes up to second-order feedforward kernels (k1 and
k2), and K3 includes up to third-order feedforward kernels (k1 ,
k2 , and k3); all models contain a threshold (� ) and a first-order
feedback kernel (h).

A. K1 Model

The response functions (r1 and h) of a representative K1
model are plotted in Fig. 6. In Fig. 6(a), r1 rises abruptly in the

beginning from −0.6 mV, reaches the peak amplitude 10.3 mV
at � = 24 ms, and decays to lower than 1 mV (less than 10% of
the peak) at 112 ms. In Fig. 6(b), h has a peak amplitude of 6.3
mV at the beginning and decays to lower than 0.6 mV (less than
10% of the peak) at 121 ms. The K1 model’s average prediction
performance over all datasets in NMSE is 17.9% and SPER is
22.4%.

B. K2 Model

The response functions (r1 , r2 , and h) of a representative K2
model are plotted in Fig. 7. In Fig. 7(a), r1 rises to the peak
10.3 mV at 20 ms and decays to 1 mV at 118 ms. In Fig. 7(b),
on the diagonal, r2 starts from −6.17 mV, rises to a minimum
0 mV at (60 ms, 60 ms), reaches the peak 1.79 mV at (90 ms,
90 ms), and decays to 0.14 mV at (190 ms, 190 ms). In general
description, r2 response function is depressive for short-interval
(less than 60 ms) input pairs, facilitative for longer interval
(more than 60 ms) input pairs, and relatively ineffective to input
pairs that have an interval longer than 190 ms. In Fig. 7(c), h
has a peak amplitude 6.3 mV at 6 ms and decays to 0.6 mV at
33 ms. The K2 model’s average prediction performance over all
datasets in NMSE is 15.1% and SPER is 20.2%.

C. K3 Model

The response functions (r1 , r2 , r3 , and h) of a representa-
tive K3 model are plotted in Fig. 8. In Fig. 8(a), r1 rises to
the peak 10.39 mV at 22 ms and decays to 0.96 mV at 113
ms. In Fig. 8(b), on the diagonal, r2 starts negatively at −1.28
mV, reaches the minimum −5.5 mV at (30 ms, 30 ms), rise to
0.3 mV at (70 ms, 70 ms), reaches the peak 2.3 mV at (110
ms, 110 ms), and decays to 0.19 mV at (220 ms, 220 ms). In
Fig. 8(c), r3 starts at peak 12.6 mV at the beginning and decays
to 0.95 mV in 50 ms. In general description, r3 is facilitative
if the previous two pulses have intervals less than 60 ms to the
current pulse. The facilitative effect of r3 is weak and relatively
ineffective when the previous pulses have intervals longer than
60 ms. In Fig. 8(d), h has a peak amplitude 5.5 mV at the begin-
ning and decays to 0.54 mV at 50 ms. The K3 model’s average
prediction performance over all datasets in NMSE is 14.4% and
SPER is 18.8%.

D. PSP Waveform Prediction

The PSP waveform prediction was evaluated with NMSE.
The distribution of out-of-sample NMSEs to all datasets are
shown in Fig. 9 (N = 98). The average NMSEs to K1 , K2 ,
and K3 models are 17.9%, 15.1%, and 14.4%, respectively [see
Fig. 9(a)]. Moreover, the NMSE improvement from K1 to K2 is
14.2% and from K1 to K3 is 18.7% [see Fig. 9(b)].

E. Spike Prediction

Spike trains are predicted by using the estimated kernels and
the optimal thresholds, as described in Section II. The distri-
bution of SPERs of all datasets is shown in Fig. 10. The aver-
age SPERs to K1 , K2 , and K3 are 22.4%, 20.2%, and 18.8%,
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Fig. 9. Distributions of NMSEs and NMSE improvements with increasing
model orders. (a) NMSE histograms of K1 , K2 , and K3 . (b) NMSE improvement
histograms.

respectively [see Fig. 10(a)]. The SPER improvement from K1
to K2 is 11.2% and from K1 to K3 is 18.7% [see Fig. 10(b)].

IV. DISCUSSION

The nonlinear dynamical single-neuron model described in
this paper is genuinely data-driven. In other words, all model
parameters are simultaneously constrained by using experimen-
tal data (intracellular recording) with rigorously defined error
measures, i.e., NMSE and SPER. No arbitrary manipulation of
model parameters in regard to error terms is involved. More
importantly, all data constraining the model parameters are de-
rived from a single experimental set for which broadband in-
put conditions are imposed on the preparation. As argued else-
where [31], [50], these represent ideal conditions for modeling
input–output nonlinear dynamics of a neurobiological system.
Finally, the model captures subthreshold and suprathreshold
activities and their interactions in a single mathematical formal-
ism.

The model described here is a general one. It is a hybrid, com-
bining both mechanistic (parametric) and input–output (non-

Fig. 10. Distributions of SPERs and SPER improvements with increasing
model orders. (a) SPER histograms of K1 , K2 , and K3 . (b) SPER improvement
histograms.

parametric) components. Principles of neuronal processes com-
mon to all spike-input and spike-output neurons, e.g., biological
signal generation and flow (see Fig. 2), determine the model
structure. On the other hand, the specific properties that are
variable from neuron to neuron are captured and quantified with
descriptive model parameters that are directly constrained by
intracellular recording data. This hybrid representation of both
parametric and nonparametric model components partitions data
variance with respect to mechanistic sources, and thus, im-
poses physiological definitions to the model components and
facilitates the biological interpretations of the parameters. In
addition, this hybrid structure representation conducts the esti-
mation power of each model component to specific dynamics
of the designated neuronal processes, producing more accurate
estimations as opposed to capturing the neuron input–output
transformation as a whole with a single nonparametric model
component. This model is general enough to be applied to any
spike-input and spike-output neuron, and flexible enough to
capture neuron-to-neuron differences.
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In general, achieving both high accuracy and high efficiency
in a single-model formalism is difficult. High model accuracy
usually is achieved by including a large number of open param-
eters, though unfortunately, this often reduces computational
efficiency. High computational efficiency usually is achieved by
simplifying the modeling methodology; however, model accu-
racy is inevitably compromised. Our results show that the model
described in this study achieved both high accuracy and high
efficiency. The average model accuracy in predicting PSP mea-
sured by NMSE is 14.4% and average suprathreshold spiking
activity measured by SPER is 18.8%. Moreover, the modeling
procedures can be performed easily using a PC (AMD Phenom
9750), and the total number of open parameters is relatively
small, e.g., ten open parameters in the case of the first-order
model (K1), 16 in the case of the second-order model (K2), and
26 in the case of the third-order model (K3).

The model shown here is an extension of an earlier approach
developed by our laboratory [30]. In that study, Song et al.
demonstrated the feasibility of using a similar model structure
to capture the nonlinear dynamics when the input–output signals
are extracellularly recorded unitary activities (spikes). Due to the
different modeling goals and data-collecting paradigms, there
are three major differences between the neuron model used by
Song et al. and the neuron model described in this study: 1) the
number of model inputs; 2) the noise term before threshold; and
3) the parameter estimation method. First, the model by Song
et al. utilized extracellularly recorded ensemble of spike trains,
and thus, was a multi-input and multioutput (MIMO) model.
Since each CA1 neurons can potentially receive inputs from
multiple CA3 neurons, it is reasonable to include all observed
inputs in the model, and then, downselect them with statistical
methods [49]. By contrast, in the experimental preparation of
this study, recorded CA1 neurons received artificially delivered
stimulation pulses from one stimulation source. In other words,
the synapses of the intracellularly recorded CA1 neurons were
activated simultaneously. This resulted in an SISO formalism.

Second, the extracellular MIMO model by Song et al. and
the intracellular SISO model developed here dealt with noise
differently. There are two major sources of stochastic activity
in a neuron: 1) unobserved inputs and 2) intrinsic randomness
of underlying mechanisms [51]–[53]. Both sources exist in the
experimental context of the extracellular MIMO model. Thus,
it is well-founded for the MIMO model to include a noise term
to capture those stochastic activities. By contrast, in this study,
the synaptic connections between CA3 and CA1 neurons were
surgically eliminated so that no spontaneous activity occurred.
This experimental preparation drastically reduced the stochastic
level of the recorded CA1 neuron system and resulted in a model
structure without an explicit noise term.

As to the last difference in parameter estimation method,
extracellularly recorded all-or-none action potentials do not
provide direct information about subthreshold membrane po-
tential. This lack of subthreshold information along with the
introduction of a noise term led the MIMO model to the utiliza-
tion of a maximum-likelihood method for parameter estimation.
On the other hand, intracellular whole-cell patch clamp traces
continuously the membrane potential in both subthreshold and

suprathreshold regimes. This information-rich data along with
a low noise level enabled the use of least-squares estimation to
estimate the model parameters in this study.

Despite the good performance, there are still several possi-
ble ways to improve/extend the model described in this report.
First, neuron threshold has been reported to be dynamical as
opposed to a constant [54], [55]. Although the average SPER
of our model was already low, we are compelled to incorpo-
rate a dynamical threshold in future model developments to
more completely capture the neuron input–output dynamics.
We also expect spike prediction accuracy to be increased by
this extension. Second, to enhance the physiological plausibil-
ity of the model, a necessary development would be to ex-
tend the current intracellular SISO model to an MISO model
by delivering independent asynchronous stimulation trains to
different CA1 input areas through multiple stimulation elec-
trodes and modifying the modeling methodology correspond-
ingly. Third, the stimulation paradigm and modeling method-
ology applied here are developed mainly to study short-term
synaptic plasticity. In hippocampal and other cortical neurons,
higher stimulation mean frequency may lead to longer changes
of the input–output properties [28], such as long-term synaptic
plasticity. The current modeling strategy then needs to be modi-
fied in order to track such long-term changes [56], [57]. Finally,
this model can be combined with other modeling/experimental
methods to study the underlying mechanisms of neurons. Specif-
ically, by building nonlinear dynamical models of neurons
as described here with and without a certain pharmacologi-
cal manipulation, e.g., application of an agonist/antagonist of
a certain type of ionic channel, we can quantify the func-
tional contribution of a certain mechanism to the overall sys-
tem behavior and gain further understandings and insights to
it [44].
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