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Abstract

The need often arises in many modeling studies of physiological systems with feedback, for
separate characterization of the feedthrough and feedback components using stimulus}re-
sponse data from the entire system. For instance, the hippocampal formation consists of
multiple feedback connections which are di$cult to identify experimentally. This paper investi-
gates the application of adaptive estimation techniques in the context of the Volterra}Wiener
approach to decompose unobservable subsystems from the overall feedback system data.
Computer simulation studies have demonstrated its e!ectiveness over the traditional approach
which employs nonlinear systems analysis in the frequency domain. This approach can be used
to indirectly characterize the unobservable feedback basket cells in the hippocampus utilizing
experimental stimulus}response data from dentate granule cells. ( 1999 Elsevier Science B.V.
All rights reserved.

1. Introduction

Feedback is ubiquitous in physiological systems in general and in neural systems in
particular. Direct experimental observation in the form of stimulus}response data is
usually possible for the overall feedback system. In many instances, experimental
manipulation (e.g., pharmacological or surgical intervention) allows the direct experi-
mental observation of stimulus}response data from the feedthrough component alone
(i.e., open-loop experiment by disabling the feedback pathway). However, it is rarely
feasible to record stimulus}response data directly from the feedback pathway alone
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and, thus direct modeling of the feedback component alone is not usually possible. In
these cases, the only way of modeling the feedback component alone is indirectly,
through system decomposition using the direct measurements from the overall system
and the feedthrough component. This task is mathematically and computationally
complicated in the presence of nonlinearities, with no e!ective methodologies cur-
rently available for its pursuit.

This paper presents an e!ective methodology for accomplishing this task when the
feedthrough component is nonlinear and the feedback component is either linear or
nonlinear of a speci"c type. The method is placed in the general Volterra context for
the representation of system nonlinearities and employs adaptive estimation tech-
niques to obtain estimates of the feedback component. We expect that this approach
can be extended later to a broader class of nonlinear feedback components, as well as
more complex model con"gurations with multiple or nested feedback loops.

The use of adaptive estimation techniques enables the characterization of neuronal
network components that are not experimentally observable. The input}output
properties of experimentally observable neuronal networks are represented by kernels
of the Volterra functional series [1,10}12]. which are determined by random impulse
train stimulation of network a!erents while simultaneously recording the activity of
the output neurons. Kernel representation of these experimentally observable systems
enables the methodical identi"cation of experimentally unobservable subsystems
(decomposition) using adaptive estimation. The adaptive estimation approach seems
to overcome the limitations of the previously used decomposition method that is
based on nonlinear systems analysis in the frequency domain [3,6,9,17].

It is hoped that this approach will enable the systematic network analysis and
decomposition of the hippocampal formation which consists of "ve major cell popula-
tions. These cell populations are serially organized (Fig. 1B) in a multiple cascade
con"guration, i.e. the output of one cell population provides the input to another cell
population. Each major cell population is further modulated by smaller subsystems of
cells which provide a variety of feedback or feedforward connections. While many of
the cell populations can be identi"ed experimentally, other smaller subsystems (e.g.,
feedback) are di$cult to record from and cannot be directly identi"ed. This gives rise
to the requirement of e!ective decomposition methods.

As an example, consider the application of the adaptive estimation approach to the
study of the granule cells of the dentate gyrus (Fig. 1B) which are modulated by
multiple feedback connections known as basket cells. While the granule cells are
relatively easy to record from, the basket cells are not, but play a very in#uential role
in memory and learning. However, the dynamic properties of the basket cells can be
derived through decomposition of those systems that we can experimentally record
from. Simultaneous recording of the granule cell output (including feedback inhibi-
tion) during random impulse train stimulation (RITS) at the perforant path is de"ned
as the overall system. Recording of the granule cell output without the feedback
inhibition during RITS is also possible by pharmacologically blocking the basket
cells. This system is subsequently described as the feedthrough subsystem. Character-
ization of these two systems enables the decomposition of the feedback subsystem
using adaptive estimation techniques.

642 M.T. Chian et al. / Neurocomputing 26}27 (1999) 641}654



Fig. 1. The hippocampal formation. (A) Illustrations of three preparations which are used to obtain
nonlinear response properties for the dentate granule cells of the hippocampus. (B) The corresponding
box diagrams of the idealized intrinsic circuitry for each preparation. (C) Feedback model of the dentate
gyrus

The adaptive estimation approach alleviates many of the limitations associated
with decomposition in the frequency domain using nonlinear systems analysis [4,17].
Successful decomposition using nonlinear systems analysis is highly sensitive to errors
in the kernel estimates of observable systems. Conversely, successful decomposition
using the adaptive estimation method is less sensitive to errors in the kernel estimates
and is performed entirely in the time domain. Initial studies conducted on simulated
nonlinear systems with linear and nonlinear feedback in the presence of noise has
shown that the adaptive approach is far more e!ective than nonlinear systems
analysis in the frequency domain for feedback decomposition.

2. Methodology

Adaptive estimation algorithms have been used extensively to obtain estimates of
unknown parameters according to an error minimization criterion. The most basic
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form of adaptive estimation is the least-mean-squares (LMS) method, which is based
on the steepest descent algorithm and enables the adjustment of the unknown
parameter values of a system from sample to sample in order to minimize the output
mean-square-error (MSE) [7,18]. Many other adaptive estimation algorithms exist,
most of them based on gradient descent methods for minimization of an error
function.

The application of the Volterra approach to nonparametric modeling of neural
systems has been studied extensively in recent years [2,12,13,16,17]. The general
input}output relation of any discrete-time, stable, nonlinear time-invariant system
may be described by the discrete-time Volterra series:
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where x(n) denotes the input and Mk
i
N denote the Volterra kernels of the system. The

kernels describe the dynamics of a system at each order of nonlinearity. The kernels
for a real biological system can be estimated from input}output data using a variety of
techniques [8,10,11,14,15].

This paper is concerned with modeling the dentate gyrus of the hippocampus. This
system may be represented by the feedback model of Fig. 1C where the feedthrough
subsystem A represents the granule cells and the feedback subsystem B represents the
inhibitory feedback interneurons, e.g. basket cells.

While the granule cells of the dentate gyrus are reasonably easy to record from,
it is very di$cult to record from the feedback interneurons known as basket
cells. However, if we can characterize the overall system and the feedthrough subsys-
tem A, then the feedback subsystem B may be indirectly characterized through
decomposition. The overall system may be characterized through random im-
pulse train stimulation (RITS) and recording the output of the granule cells which
includes the e!ect of the feedback interneurons. The feedthrough subsystem may be
isolated by blocking the feedback inhibition pharmacologically and characterized
through RITS.

If input}output data for the overall system and the feedthrough subsystem can be
experimentally obtained, then the feedback subsystem may be characterized through
decomposition using adaptive estimation. If the feedthrough subsystem A (a
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2
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the overall system are nonlinear, then the general expressions for the noise-free signals
in Fig. 1C are:
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respectively. If we choose a quadratic error function:
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where e"y!y( is the error to be minimized between the output model prediction
y and the actual output observation y( , then the unknown feedback kernels can be
determined by minimization of C using the gradient steepest descent method.

The "rst-order feedback kernel (Eq. (6)) may be estimated by means of the iterative
expression based on gradient descent:
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where j is the iteration index and c is a speci"ed adaptation constant. The partial
derivative in Eq. (6) can be expressed in terms of the chain rule as:
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Likewise, the second-order feedback kernel (Eq. (8)) may be estimated as
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where j is the iteration index and c (is a speci"ed adaptation constant. The partial
derivative in Eq. (8) can be expressed in terms of the chain rule as
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Note that the feedthrough kernels must be known (or previously estimated by
open-loop data) for this algorithm. These unknown kernel values are updated until
the error function is reduced below a certain speci"ed threshold. Note that the values
of u(n) used in the iterative expressions (7) and (9) are also continuously updated at
each iteration according to Eq. (4).
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3. Illustrative example

This approach was tested and validated using simulated data generated from the
feedback system of Fig. 2. The feedthrough subsystem A is composed of the cascade of
a linear "lter with impulse response, g(m) followed by a quadratic static nonlinearity:
(z)#a(z)2. The feedback subsystem B is likewise composed of the cascade of a linear
"lter with impulse response f(m) and a quadratic static nonlinearity: (z)#b(z)2.
Although the feedthrough and the feedback subsystem is a second-order Volterra
system when viewed in isolation, the overall system is an in"nite order Volterra
system in the closed-loop conditions.

The chosen impulse response functions g(m), feedthrough, and f (m), feedback, are
shown in Fig. 3. The nonlinear feedthrough subsystem and the nonlinear overall
system are simulated separately for a Poisson process input with mean rate of j"0.10
and 2000 data points (about 200 spikes), for two cases: linear feedback (b"0) and
nonlinear feedback (b"0.2).

From the input}output data of the feedthrough subsystem, we estimate the kernels
a
1
and a

2
using a kernel estimation technique based on arti"cial neural networks [15].

Comparison of the kernel estimates to the actual kernels (Figs. 4 and 5) shows that the
feedthrough "rst- and second-order kernel estimates are very accurate.

Once the kernel estimates for the feedthrough subsystem are computed, adaptive
estimation of the feedback kernels can be performed using the overall system in-
put}output data. For linear feedback, the decomposition result using adaptive estima-
tion is compared to the actual feedback kernel as well as the result using the
frequency-domain approach in Fig. 6. The adaptive decomposition result was com-
puted using 1000 iterations with an adaptation constant c"0.001. From the result of
Fig. 6, it is evident that the adaptive estimation technique is far more accurate than the
frequency-domain technique.

Fig. 2. Simulated feedback system with feedthrough subsystem A and feedback subsystem B.
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Fig. 3. Impulse response functions of the linear "lters of the simulated system.

Fig. 4. Exact and estimated "rst-order kernel of the feedthrough subsystem.
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Fig. 5. (A) Actual second-order kernel of the feedthrough subsystem. (B) Estimated second-order kernel of
the feedthrough subsystem.

To examine the robustness of the adaptive estimation approach in the presence of
output-additive noise, we add Gaussian white noise to the output for a signal-to-noise
ratio of 0 dB. The obtained results from the noisy data are shown in Fig. 7 and
demonstrate the robustness of the proposed approach.
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Fig. 6. Decomposed "rst-order feedback kernel using adaptive estimation vs. frequency-domain technique,
along with the actual "rst-order feedback kernel.

Fig. 7. Comparison of actual "rst-order kernel to adaptive result with noisy data.
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Fig. 8. Decomposed "rst-order feedback kernel vs. actual "rst-order feedback kernel for the nonlinear
feedback case.

In the nonlinear feedback case (b"0.2), we seek to recover the quadratic coe$cient
b (Fig. 2) in addition to the "rst-order feedback kernel,using adaptive estimation.
Using the chain rule for the system of Fig. 2, we derive the following iterative chain
rule:
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Fig. 9. (A) Actual second-order kernel of the feedback subsystem. (B) second-order feedback kernel
constructed from decomposed "rst-order feedback kernel and the trained b coe$cient.
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Fig. 10. Model predicted output (dotted) vs. the actual system output (solid) for nonlinear feedback case.
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Note that k is, in general, a di!erent adaptation constant.
The "rst-order feedback kernel shown in Fig. 8 along with the exact kernel,

demonstrates the e$cacy of this approach.
The obtained estimate of the quadratic coe$cient b is 0.1895 (versus the exact value

b"0.2). The result was computed using 1000 iterations with adaptive constant
c"0.008 in Eq. (10) and k"0.01 in Eq. (12). However, the nonlinear feedback case
required 5000 data points (500 spikes), which was larger than the data record used in
the linear feedback case (by a factor of 5).

From the decomposed "rst-order feedback kernel and the trained b coe$cient,
a second-order feedback kernel was constructed. Comparison of the constructed
second-order feedback kernel (Fig. 9B) to the actual second-order feedback kernel
(Fig. 9A) show that the constructed kernel is very similar in time course but slightly
smaller in amplitude.

Another illustration of the e$cacy of this approach is given in Fig. 10, where
a segment of the model predicted output is shown along with the actual output.
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4. Discussion

The development of an adaptive estimation approach for feedback decomposition
was necessitated by limitations of the previously proposed method of nonlinear
systems analysis in the frequency domain [4]. The adaptive estimation approach
yields more accurate results and is more robust in the presence of noise.

One fundamental di!erence between the two approaches is that kernel estimates are
required for both the feedthrough subsystem and the overall system for nonlinear
systems analysis, but only the feedthrough kernels are required for adaptive estima-
tion. In nonlinear systems analysis, it was also observed that the poor accuracy of
feedback decomposition was primarily attributed to inaccurate overall system kernel
estimates due to higher-order nonlinearities [5]. Thus, the adaptive estimation
method yields more accurate results because only the feedthrough kernel estimates are
required, along with the overall system input}output data.

Another source of error in feedback decomposition is the frequency transforma-
tions for nonlinear systems analysis. The latter requires multi-dimensional discrete
frequency transforms for each kernel estimate involved in the decomposition process.
Small estimation errors associated with each discrete frequency transform can be
magni"ed to larger errors due to divisions used in this approach. Conversely, adaptive
estimation is performed entirely in the time domain with an iterative procedure. While
this requires a slightly longer computation time, the results have demonstrated higher
accuracy and greater robustness to noise.

The initial studies show that the adaptive method produced better decomposition
results for the feedback case than the nonlinear systems analysis method in the
frequency domain. While adaptive estimation typically requires longer computation
time due to the employed iterative procedures, this approach overcomes many of the
limitations associated with the frequency domain approach. It is expected that the
adaptive estimation approach can be used to decompose di!erent con"gurations in
the hippocampus. Not only can it be applied to feedback systems but the concept can
be extended to analyze more complicated con"gurations including nested feedback,
parallel, and cascade systems. Application of this approach to experimental data is
currently under way.
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